DOI QR코드

DOI QR Code

Fabrication of Porous Electrodes for Zinc-Ion Supercapacitors with Improved Energy Storage Performance

아연-이온 전기화학 커패시터의 에너지 저장 성능향상을 위한 다공성 전극 제조

  • An, Geon-Hyoung (Department of Energy Engineering, Gyeongnam National University of Science and Technology)
  • 안건형 (경남과학기술대학교 에너지공학과)
  • Received : 2019.07.03
  • Accepted : 2019.08.08
  • Published : 2019.08.27

Abstract

Zn-ion supercapacitors (ZICs) show high energy densities with long cycling life for use in electronic devices. Porous Zn electrodes as anodes for ZICs are fabricated by chemical etching process using optimized conditions. The structures, morphologies, chemical bonding states, porous structure, and electrochemical behavior are examined. The optimized porous Zn electrode shows a root mean square of roughness of 173 nm and high surface area of $153{\mu}m^2$. As a result, ZIC using the optimized porous Zn electrode presents excellent electrochemical performance with high specific capacitance of $399F\;g^{-1}$ at current density of $0.5A\;g^{-1}$, high-rate performance ($79F\;g^{-1}$ at a current density of $10.0A\;g^{-1}$), and outstanding cycling stability (99 % after 1,500 cycles). The development of energy storage performance using synergistic effects of high roughness and high surface area is due to increased electroactive sites by surface functionalization of Zn electrode. Thus, our strategy will lead to a rational design and contribute to next-generation supercapacitors in the near future.

Acknowledgement

Supported by : Gyeongnam National University of Science and Technology

References

  1. P. Simon, Y. Gogotsi and B. Dunn, Science, 343, 1210 (2014). https://doi.org/10.1126/science.1249625
  2. D.-Y. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 27, 617 (2017). https://doi.org/10.3740/MRSK.2017.27.11.617
  3. Y.-G. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 27, 192 (2017). https://doi.org/10.3740/MRSK.2017.27.4.192
  4. G. Wang, L. Zhang and J. Zhang, Chem. Soc. Rev., 41, 797 (2012). https://doi.org/10.1039/C1CS15060J
  5. G.-H. An, D.-Y. Lee and H.-J. Ahn, J. Mater. Chem. A, 5, 19714 (2017). https://doi.org/10.1039/C7TA06345H
  6. L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu, J. Cheng, C. Xu, B. Li, Q.-H. Yang and F. Kang, Energy Storage Mater., 13, 96 (2018). https://doi.org/10.1016/j.ensm.2018.01.003
  7. G.-H. An, S. N. Cha and J. I. Sohn, Appl. Surf. Sci., 467-468, 1157 (2019). https://doi.org/10.1016/j.apsusc.2018.10.247
  8. Y. Tian, R. Amal and D.-W. Wang, Front. Energy Res., 4, 1 (2016).
  9. H. Wang, M. Wang and Y. Tang, Energy Storage Mater., 13, 1 (2018). https://doi.org/10.1016/j.ensm.2017.12.022
  10. Y.-G. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 28, 182 (2018). https://doi.org/10.3740/MRSK.2018.28.3.182
  11. Y.-G. Lee, G.-H. An and H.-J. Ahn, Korean J. Mater. Res., 28, 640 (2018). https://doi.org/10.3740/MRSK.2018.28.11.640
  12. G.-H. An and H.-J. Ahn, J. Korean Powder Metall. Inst., 24, 96 (2017). https://doi.org/10.4150/KPMI.2017.24.2.96
  13. G.-H. An, D.-Y. Lee and H.-J. Ahn, ACS Appl. Mater. Interfaces, 9, 12478 (2017). https://doi.org/10.1021/acsami.7b01286
  14. G.-H. An, H. Kim and H.-J. Ahn, ACS Appl. Mater. Interfaces, 10, 6235 (2018). https://doi.org/10.1021/acsami.7b15950
  15. G.-H. An and H.-J. Ahn, Appl. Surf. Sci., 473, 77 (2019). https://doi.org/10.1016/j.apsusc.2018.12.120
  16. G.-H. An, H. Kim and H.-J. Ahn, J. Ind. Eng. Chem., 68, 146 (2018). https://doi.org/10.1016/j.jiec.2018.07.039