Emulsification of O/W Emulsion Using Non-ionic Mixed Surfactant: Optimization Using CCD-RSM

비이온성 혼합계면활성제를 이용한 O/W 유화액의 제조 : CCD-RSM을 이용한 최적화

  • Lee, Seung Bum (Department of Chemical Engineering, Dankook University) ;
  • Li, Guangzong (Department of Chemical Engineering, Dankook University) ;
  • Zuo, Chengliang (Department of Chemical Engineering, Dankook University) ;
  • Hong, In Kwon (Department of Chemical Engineering, Dankook University)
  • 이승범 (단국대학교 화학공학과) ;
  • 리광종 (단국대학교 화학공학과) ;
  • 줘청량 (단국대학교 화학공학과) ;
  • 홍인권 (단국대학교 화학공학과)
  • Received : 2019.07.30
  • Accepted : 2019.09.02
  • Published : 2019.10.10


A mixing ratio of the oil in water (O/W) emulsion of palm oil and the non-ionic surfactant (Tween-Span type) possessing different hydrophile-lipophilie balance (HLB) values was evaluated in this work. An optimum condition was determined through analysis of main and interaction effects of each quantitative factor using central composite design model-response surface methodology (CCD-RSM). Quantitative factors used by CCD-RSM were an emulsification time, emulsification speed, HLB value and amount of surfactant. On the other hand, the reaction parameters were the viscosity and mean droplet size of O/W emersion. Optimized conditions obtained from CCD-RSM were the emulsification time of 12.7 min, emulsification speed of 5,551 rpm, HLB value of 8.0 and amount of surfactant of 5.7 wt.%. Ideal experimental results under the optimized experimental condition were the viscosity of 1,551 cP and mean droplet size of 432 nm which satisfy the targeted values. The average error value from our actual experiment for verifying the conclusions was below to 2.5%. Therefore, a high favorable level could be obtained when the CCD-RSM was applied to the optimized palm oil to water emulsification.

본 연구에서는 palm oil과 서로 다른 HLB (hydrophile-lipophilie balance) value를 갖는 Tween-Span계 비이온성 계면활성제를 혼합하여 O/W (oil in water) 유화액을 제조하고, 유화액의 유화안정성을 향상시키기 위한 최적 유화조건을 결정하였다. 이를 위해 CCD-RSM (central composite design model-response surface methodology)을 이용하여 각 계량인자의 주효과 및 교호효과를 해석하였으며, 두 가지 반응치를 동시에 만족하는 최적조건을 결정하였다. CCD-RSM의 계량인자로는 유화시간, 유화속도, HLB value, 계면활성제의 첨가량 등을 설정하고, 반응치로는 O/W 유화액의 점도와 평균액적크기를 설정하였다. CCD-RSM 최적화 분석결과 반응치인 O/W 유화액이 점도와 평균액적크기의 목표치를 동시에 부합하는 최적조건은 유화시간(12.7 min), 유화속도(5,551 rpm), HLB value (8.0), 계면활성제의 첨가량(5.7 wt.%)으로 산출되었으며, 이 조건에서의 CCD-RSM 예측결과는 점도(1,551 cP)와 평균액적크기(432 nm)이었다. 이 조건의 실제 실험 결과 오차율은 2.5% 이하로 나타나 O/W 유화액 제조과정에 CCD-RSM 최적화 분석을 적용할 경우 비교적 높은 유의수준의 만족하는 결과를 얻을 수 있었다.


  1. P. Dubuisson, C. Picard, M. Grisel, and G. Savary, How does composition influence the texture of cosmetic emulsions, Colloids Surf. A, 536, 38-46 (2018).
  2. K. C. Powell and A. Chauhan, Interfacial effects and emulsion stabilization by in situ surfactant generation through the saponification of esters, Colloids Surf. A, 504, 458-470 (2016).
  3. R. Pal, Influence of interfacial rheology on the viscosity of concentrated emulsions, J. Colloid Interface Sci., 356, 118-112 (2011).
  4. M. Miyake and Y. Yamashita, Molecular structure and phase behavior of surfactants, Cosmet. Sci. Tech., 24, 389-414 (2017).
  5. A. Sedaghat Doost, D. Sinnaaeve, L. De Neve, and P. Van der Meeren, Influence of non-ionic surfactant type on the salt sensitivity of oregano oil-in-water emulsions, Colloids Surf. A, 525, 38-48 (2017).
  6. K.-Y. Kyoung and C.-K. Lee, Development and prospect of emulsion technology in cosmetics, J. Soc. Cosmet. Sci. Korea, 32(4), 227-236 (2006).
  7. P. Yunita, S. Irawan, and D. Kania, Optimization of water-based drilling fluid using non-ionic and anionic surfactant additives, Procedia Eng., 148, 1184-1190 (2016).
  8. W. C. Griffin, Calculation of HLB values of non-ionic surfactants, J. Soc. Cosmet. Chem., 5, 249-256 (1954).
  9. L. O. Orafidiya and F. A. Oladimeji, Determination of the required HLB values of some essential oils, Int. J. Pharm., 237, 241-249 (2002).
  10. C. Chen, Y. Shao, Y. Tao, and H. Wen, Optimization of dynamic microwave-assisted extraction of Armillaria polysaccharides using RSM, and their biological activity, LWT Food Sci. Technol., 64, 1263-1269 (2015).
  11. K. Ameer, S.-W. Bae, Y. Jo, H.-G. Lee, A. Ameer, and J.-H. Kwon, Optimization of microwave-assisted extraction of total extract stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling, Food Chem., 229, 198-207 (2017).
  12. S. Jain, T. Winuprasith, and M. Suphantharika, Design and synthesis of modified and resistant starch-based oil-in-water emulsions, Food Hydrocolloids, 89, 153-162 (2019).
  13. J. Sharma, S. P. Anand, V. Pruthi, A. S. Chaddha, J. Bhatia, and B. S. Kaith, RSM-CCD optimized adsorbent for the sequestration of carcinogenic rhodamine-B: Kinetics and equilibrium studies, Mater. Chem. Phys., 196, 270-283 (2017).
  14. Y. H. Tan, M. O. Abdullah, and C. Nolasco-Hipolito, Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO, Renew. Energy, 114, 437-447 (2017).