비이온성 혼합계면활성제를 이용한 O/W 유화액의 제조 : CCD-RSM을 이용한 최적화

Emulsification of O/W Emulsion Using Non-ionic Mixed Surfactant: Optimization Using CCD-RSM

  • 이승범 (단국대학교 화학공학과) ;
  • 리광종 (단국대학교 화학공학과) ;
  • 줘청량 (단국대학교 화학공학과) ;
  • 홍인권 (단국대학교 화학공학과)
  • Lee, Seung Bum (Department of Chemical Engineering, Dankook University) ;
  • Li, Guangzong (Department of Chemical Engineering, Dankook University) ;
  • Zuo, Chengliang (Department of Chemical Engineering, Dankook University) ;
  • Hong, In Kwon (Department of Chemical Engineering, Dankook University)
  • 투고 : 2019.07.30
  • 심사 : 2019.09.02
  • 발행 : 2019.10.10


본 연구에서는 palm oil과 서로 다른 HLB (hydrophile-lipophilie balance) value를 갖는 Tween-Span계 비이온성 계면활성제를 혼합하여 O/W (oil in water) 유화액을 제조하고, 유화액의 유화안정성을 향상시키기 위한 최적 유화조건을 결정하였다. 이를 위해 CCD-RSM (central composite design model-response surface methodology)을 이용하여 각 계량인자의 주효과 및 교호효과를 해석하였으며, 두 가지 반응치를 동시에 만족하는 최적조건을 결정하였다. CCD-RSM의 계량인자로는 유화시간, 유화속도, HLB value, 계면활성제의 첨가량 등을 설정하고, 반응치로는 O/W 유화액의 점도와 평균액적크기를 설정하였다. CCD-RSM 최적화 분석결과 반응치인 O/W 유화액이 점도와 평균액적크기의 목표치를 동시에 부합하는 최적조건은 유화시간(12.7 min), 유화속도(5,551 rpm), HLB value (8.0), 계면활성제의 첨가량(5.7 wt.%)으로 산출되었으며, 이 조건에서의 CCD-RSM 예측결과는 점도(1,551 cP)와 평균액적크기(432 nm)이었다. 이 조건의 실제 실험 결과 오차율은 2.5% 이하로 나타나 O/W 유화액 제조과정에 CCD-RSM 최적화 분석을 적용할 경우 비교적 높은 유의수준의 만족하는 결과를 얻을 수 있었다.


  1. P. Dubuisson, C. Picard, M. Grisel, and G. Savary, How does composition influence the texture of cosmetic emulsions, Colloids Surf. A, 536, 38-46 (2018).
  2. K. C. Powell and A. Chauhan, Interfacial effects and emulsion stabilization by in situ surfactant generation through the saponification of esters, Colloids Surf. A, 504, 458-470 (2016).
  3. R. Pal, Influence of interfacial rheology on the viscosity of concentrated emulsions, J. Colloid Interface Sci., 356, 118-112 (2011).
  4. M. Miyake and Y. Yamashita, Molecular structure and phase behavior of surfactants, Cosmet. Sci. Tech., 24, 389-414 (2017).
  5. A. Sedaghat Doost, D. Sinnaaeve, L. De Neve, and P. Van der Meeren, Influence of non-ionic surfactant type on the salt sensitivity of oregano oil-in-water emulsions, Colloids Surf. A, 525, 38-48 (2017).
  6. K.-Y. Kyoung and C.-K. Lee, Development and prospect of emulsion technology in cosmetics, J. Soc. Cosmet. Sci. Korea, 32(4), 227-236 (2006).
  7. P. Yunita, S. Irawan, and D. Kania, Optimization of water-based drilling fluid using non-ionic and anionic surfactant additives, Procedia Eng., 148, 1184-1190 (2016).
  8. W. C. Griffin, Calculation of HLB values of non-ionic surfactants, J. Soc. Cosmet. Chem., 5, 249-256 (1954).
  9. L. O. Orafidiya and F. A. Oladimeji, Determination of the required HLB values of some essential oils, Int. J. Pharm., 237, 241-249 (2002).
  10. C. Chen, Y. Shao, Y. Tao, and H. Wen, Optimization of dynamic microwave-assisted extraction of Armillaria polysaccharides using RSM, and their biological activity, LWT Food Sci. Technol., 64, 1263-1269 (2015).
  11. K. Ameer, S.-W. Bae, Y. Jo, H.-G. Lee, A. Ameer, and J.-H. Kwon, Optimization of microwave-assisted extraction of total extract stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling, Food Chem., 229, 198-207 (2017).
  12. S. Jain, T. Winuprasith, and M. Suphantharika, Design and synthesis of modified and resistant starch-based oil-in-water emulsions, Food Hydrocolloids, 89, 153-162 (2019).
  13. J. Sharma, S. P. Anand, V. Pruthi, A. S. Chaddha, J. Bhatia, and B. S. Kaith, RSM-CCD optimized adsorbent for the sequestration of carcinogenic rhodamine-B: Kinetics and equilibrium studies, Mater. Chem. Phys., 196, 270-283 (2017).
  14. Y. H. Tan, M. O. Abdullah, and C. Nolasco-Hipolito, Application of RSM and Taguchi methods for optimizing the transesterification of waste cooking oil catalyzed by solid ostrich and chicken-eggshell derived CaO, Renew. Energy, 114, 437-447 (2017).