DOI QR코드

DOI QR Code

Some Coefficient Inequalities Related to the Hankel Determinant for a Certain Class of Close-to-convex Functions

  • Sun, Yong (School of Science, Hunan Institute of Engineering) ;
  • Wang, Zhi-Gang (Mathematics and Computing Science, Hunan First Normal University)
  • Received : 2017.11.14
  • Accepted : 2019.03.04
  • Published : 2019.09.23

Abstract

In the present paper, we investigate the upper bounds on third order Hankel determinants for certain class of close-to-convex functions in the unit disk. Furthermore, we obtain estimates of the Zalcman coefficient functional for this class.

Keywords

coefficient inequality;Hankel determinant;Zalcman's conjecture;close-to-convex functions

Acknowledgement

Supported by : Natural Science Foundation of Hunan Province, Foundation of Educational Committee of Hunan Province

References

  1. K. O. Babalola, On $H_3$(1) Hankel determinant for some classes of univalent functions, Inequal. Theory Appl., 6(2007), 1-7.
  2. D. Bansal, Upper bound of second Hankel determinant for a new class of analytic functions, Appl. Math. Lett., 26(2013), 103-107. https://doi.org/10.1016/j.aml.2012.04.002
  3. D. Bansal, S. Maharana and J. K. Prajapat, Third order Hankel determinant for certain univalent functions, J. Korean Math. Soc., 52(2015), 1139-1148. https://doi.org/10.4134/JKMS.2015.52.6.1139
  4. J. E. Brown and A. Tsao, On the Zalcman conjecture for starlike and typically real functions, Math. Z., 191(1986), 467-474. https://doi.org/10.1007/BF01162720
  5. D. G. Cantor, Power series with integral coefficients, Bull. Amer. Math. Soc., 69(1963), 362-366. https://doi.org/10.1090/S0002-9904-1963-10923-4
  6. N. E. Cho, B. Kowalczyk, O. S. Kwon, A. Lecko and Y. J. Sim, Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal., 11(2017), 429-439.
  7. P. Dienes, The Taylor series: an introduction to the theory of functions of a complex variable, Dover Publications, New York, 1957.
  8. P. L. Duren, Univalent functions, Springer Verlag. New York, 1983.
  9. A. Edrei, Sur les determinants recurrents et les singularites d'une fonction donnee par son developpement de Taylor, Compos. Math., 7(1940), 20-88.
  10. M. Fekete and G. Szego, Eine Bemerkung uber ungerade schlichte Funktionen, J. London Math. Soc., 8(1933), 85-89.
  11. C. Gao and S. Zhou, On a class of analytic functions related to the starlike functions, Kyungpook Math. J., 45(2005), 123-130.
  12. W. K. Hayman, On the second Hankel determinant of mean univalent functions, Proc. London Math. Soc., 18(1968), 77-94.
  13. T. Hayami and S. Owa, Generalized Hankel determinant for certain classes, Int. J. Math. Anal., 4(2010), 2573-2585.
  14. A. Janteng, S. A. Halim and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math., 7(2006), Article 50, 5 pp.
  15. A. Janteng, S. A. Halim and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 1(2007), 619-625.
  16. W. Koepf, On the Fekete-Szego problem for close-to-convex functions, Proc. Amer. Math. Soc., 101(1987), 89-95.
  17. W. Koepf, On the Fekete-Szego problem for close-to-convex functions II, Arch. Math., 49(1987), 420-433. https://doi.org/10.1007/BF01194100
  18. S. K. Lee, V. Ravichandran and S. Subramaniam, Bounds for the second Hankel determinant of certain univalent functions, J. Inequal. Appl., 2013(2013), Article 281, 17 pp. https://doi.org/10.1186/1029-242X-2013-17
  19. L. Li and S. Ponnusamy, Generalized Zalcman conjecture for convex functions of order -1=2, J. Anal., 22(2014), 77-87.
  20. R. J. Libera and E. J. Z lotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(1982), 225-230. https://doi.org/10.1090/S0002-9939-1982-0652447-5
  21. R. J. Libera and E. J. Z lotkiewicz, Coefficient bounds for the inverse of a function with derivatives in P, Proc. Amer. Math. Soc., 87(1983), 251-257.
  22. W. C. Ma, The Zalcman conjecture for close-to-convex functions, Proc. Amer. Math. Soc., 104(1988), 741-744. https://doi.org/10.1090/S0002-9939-1988-0964850-X
  23. W. Ma, Generalized Zalcman conjecture for starlike and typically real functions, J. Math. Anal. Appl., 234(1999), 328-339. https://doi.org/10.1006/jmaa.1999.6378
  24. J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc., 223(1976), 337-346.
  25. C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc., 41(1966), 111-122.
  26. J. K. Prajapat, D. Bansal, A. Singh and A. K. Mishra, Bounds on third Hankel determinant for close-to-convex functions, Acta Univ. Sapientiae Math., 7(2015), 210-219. https://doi.org/10.1515/ausm-2015-0014
  27. M. Raza and S. N. Malik, Upper bound of the third Hankel determinant for a class of analytic functions related with Lemniscate of Bernoulli, J. Inequal. Appl., 2013(2013), Article 412, 8 pp. https://doi.org/10.1186/1029-242X-2013-8
  28. T. J. Suridge, Some special classes of conformal mappings, Handbook of complex analysis: Geometric Function Theory 2, 309-338, Elsevier Sci. B. V., Amsterdam, 2005.
  29. P. Zaprawa, Third Hankel determinants for subclasses of univalent functions, Mediterr. J. Math., 14(1)(2017), Art. 19, 10 pp. https://doi.org/10.1007/s00009-016-0817-2