Characteristics of Infrared Blocking, Stealth and Color Difference of Aluminum Sputtered Fabrics

  • Han, Hye Ree (Culture, Digital Seoul Culture Arts University)
  • Received : 2019.07.05
  • Accepted : 2019.08.15
  • Published : 2019.08.31


This study examines the stealth function of sputtered fabric with an infrared thermal imaging camera in terms of the thermal and infrared (IR) transmittance characteristics. Various base fabrics were selected, infrared imaging was performed, and infrared transmittance was measured. By infrared camera experiment it was found that the sample was concealed because it had a similar color to the surroundings when the aluminum layer was directed toward the outside. In addition, a comparison of the infrared thermographic image of the untreated sample and the sputtered sample in the laboratory showed that the difference in ${\Delta}E$ value ranged from 31 to 90.4 and demonstrated effective concealment. However, concealment was not observed in the case of the 3-layer (Nylon-Al-Nylon) model when a sputtered aluminum layer existed between two nylon layers. The direction of the sputtering layer did not affect the infrared transmittance in the infrared transmittance experiment. Therefore, it seems better to interpret the concealing effect in the infrared thermographic images by using thermal transfer theory rather than infrared transmittance theory. We believe that the results of this study will be applicable to developing high performance smart clothing and military uniforms.


  1. Agashe, C., Kluth, O., Hüpkes, J., Zastrow, U., Rech, B., & Wuttig, M. (2004). Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films. Journal of Applied Physics, 95(4), 1911-1917. doi:10.1063/1.1641524
  2. Agashe, C., Kluth, O., Schope, G., Siekmann, H., Hupkes, J., & Rech, B. (2003). Optimization of the electrical properties of magnetron sputtered aluminum-doped zinc oxide films for opto-electronic applications. Thin Solid Films, 442(1-2), 167-172. doi:10.1016/S0040-6090(03)00966-0
  3. Alzaidi, A., Zhang, L., & Bajwa, H. (2012). Smart textiles based wireless ECG system. Proceedings of 2012 IEEE Long Island Systems, Applications and Technology Conference (LISAT), USA, 1-5. doi:10.1109/LISAT.2012.6223206
  4. ASTM International. (2018). ASTM D737-18, Standard Test Method for Air Permeability of Textile Fabrics. ASTM International. Retrieved from
  5. Aubert, T., Assouar, M. B., Legrani, O., Elmazria, O., Tiusan, C., & Robert, S. (2011). Highly textured growth of AlN films on sapphire by magnetron sputtering for high temperature surface acoustic wave applications. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 29(2), 021010-1-021010-6. doi:10.1116/1.3551604
  6. Bergeron, B. V., White, K. C., Boehme, J. L., Gelb, A. H., & Joshi, P. B. (2008). Variable absorbance and emittance devices for thermal control. The Journal of Physical Chemistry C, 112(3), 832-838. doi:10.1021/jp076336d
  7. Burkinshaw, S. M., Hallas, G., & Towns, A. D. (1996). Infrared camouflage. Review of Progress in Coloration and Related Topics, 26(1), 47-53. doi:10.1111/j.1478-4408.1996.tb00109.x
  8. Chu, S. Z., Wada, K., Inoue, S., & Todoroki, S. (2002). Formation and microstructures of anodic alumina films from aluminum sputtered on glass substrate. Journal of The Electrochemical Society, 149(7), B321-B327. doi:10.1149/1.1480017
  9. Deng, B., Wei, Q., Gao, W., & Yan, X. (2007). Surface functionalization of nonwovens by aluminum sputter coating. FIBRES & TEXTILES in Eastern Europe, 15(4), 90-92.
  10. Depla, D., Segers, S., Leroy, W., Van Hove, T., & Van Parys, M. (2011). Smart textiles: An explorative study of the use of magnetron sputter deposition. Textile Research Journal, 81(17), 1808-1817. doi:10.1177/0040517511411966
  11. English, S. J. (1999). Estimation of temperature and humidity profile information from microwave radiances over different surface types. Journal of Applied Meteorology, 38(10), 1526-1541. doi:10.1175/1520-0450(1999)038<1526:EOTAHP>2.0.CO;2<1526:EOTAHP>2.0.CO;2
  12. Habekost, M. (2013). Which color differencing equation should be used? International Circular of Graphic Education and Research, 6, 20-33.
  13. Han, H. R. (2016). Thermal characteristics of aluminum sputtered fabrics (Unpublished doctorate dissertation). Seoul National University, Seoul.
  14. Han, H. R. (2019). 알루미늄 스퍼터링 처리 소재의 적외선 차단, 색차 변화 및 스텔스 특성에 관한 연구 [A study on the characteristics of infrared blocking, change of color difference and stealth in the aluminium sputtered materials]. Proceedings of Korea Fashion & Costume Design Association, 1st Conference, Korea, 131.
  15. Han, H. R., & Kim. J. (2018). A study on the thermal and physical properties of nylon fabric treated by metal sputtering (Al, Cu, Ni). Textile Research Journal, 88(21), 2397-2414. doi:10.1177/0040517517731662
  16. Han, H. R., Park, Y., Yun, C., & Park, C. (2018). Heat transfer characteristics of aluminum sputtered fabrics. Journal of Engineered Fibers and Fabrics, 13(3), 37-44. doi:10.1177/155892501801300305
  17. Huffman, G. L., Fahnline, D. E., Messier, R., & Pilione, L. J. (1989). Stress dependence of reactively sputtered aluminum nitride thin films on sputtering parameters. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 7(3), 2252-2255. doi:10.1116/1.575923
  18. Hui, Z., & Jianchun, Z. (2007). Near-infrared green camouflage of PET fabrics using disperse dyes. Sen'i Gakkaishi, 63(10), 223-229. doi:10.2115/fiber.63.223
  19. Jang, S., Cho, J., Jeong, K., & Cho, G. (2007). Exploring possibilities of ECG electrodes for bio-monitoring smartwear with Cu sputtered fabrics. In J. A. Jacko (Ed.), Human-computer interaction. Interaction platforms and technique : 12th International Conference, HCI International 2007, Beijing, China, July 22-27, 2007, Proceeding, Part II (pp. 1130-1137). Berlin and Heidelberg: Springer.
  20. Knotek, O., Bohmer, M., & Leyendecker, T. (1986). On structure and properties of sputtered Ti and Al based hard compound films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 4(6), 2695-2700. doi:10.1116/1.573708
  21. Li, T.-T., & Cuevas, A. (2009). Effective surface passivation of crystalline silicon by rf sputtered aluminum oxide. physica status solidi (RRL) Rapid Research Letters, 3(5), 160-162. doi:10.1002/pssr.200903140
  22. Mao, Z., Wang, W., Liu, Y., Zhang, L., Xu, H., & Zhong, Y. (2014). Infrared stealth property based on semiconductor (M)-to-metallic (R) phase transition characteristics of W-doped $VO_2$ thin films coated on cotton fabrics. Thin Solid Films, 558, 208-214. doi:10.1016/j.tsf.2014.02.055
  23. Mao, Z., Yu, X., Zhang, L., Zhong, Y., & Xu, H. (2014). Novel infrared stealth property of cotton fabrics coated with nano ZnO: (Al, La) particles. Vacuum, 104, 111-115. doi:10.1016/j.vacuum.2014.01.011
  24. Matsunami, N., Kakiuchida, H., Sataka, M., & Okayasu, S. (2013). XRD characterization of AlN thin films prepared by reactive RF-Sputter deposition. Advances in Materials Physics and Chemistry, 3(1A), 101-107. doi:10.4236/ampc.2013.31A012
  25. Puzikova, N. P., Uvarova, E. V., Filyaev, I. M., & Yarovaya, L. A. (2008). Principles of an approach for coloring military camouflage. Fiber Chemistry, 40(2), 155-159. doi:10.1007/s10692-008-9030-9
  26. Rubeziene, V., Padleckiene, I., Baltusnikaite, J., & Varnaite, S. (2008). Evaluation of camouflage effectiveness of printed fabrics in visible and near infrared radiation spectral ranges. MATERIALS SCIENCE (MEDZIAGOTYRA), 14(4), 361-365.
  27. Shahidi, S., Ghoranneviss, M., Moazzenchi, B., Anvari, A., & Rashidi, A. (2007). Aluminum coatings on cotton fabrics with low temperature plasma of argon and oxygen. Surface and Coatings Technology, 201(9-11), 5646-5650. doi:10.1016/j.surfcoat.2006.07.105
  28. Shigesato, Y., & Paine, D. C. (1994). A microstructural study of low resistivity tin-doped indium oxide prepared by d.c. magnetron sputtering. Thin Solid Films, 238(1), 44-50. doi:10.1016/0040-6090(94)90646-7
  29. Shih, W.-C., & Zoh, Z.-X. (2014). Fabrication of AlN films by RF magnetron sputtering for surface acoustic wave applications. Ferroelectrics, 459(1), 52-62. doi:10.1080/00150193.2013.837768
  30. Shuskus, A. J., Reeder, T. M., & Paradis, E. L. (1974). rf-sputtered aluminum nitride films on sapphire. Applied Physics Letters, 24(4), 155. doi:10.1063/1.1655132
  31. Suter, J. J., Bryden, W. A., Kistenmacher, T. J., & Parga, R. D. (1995). Aluminum nitride on sapphire films for surface acoustic wave chemical sensors. Johns Hopkins APL Technical Digest, 16(3), 288-295.
  32. Valor, E., & Caselles, V. (1996). Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sensing of Environment, 57(3), 167-184. doi:10.1016/0034-4257(96)00039-9
  33. Wang, W., Fang, S., Zhang, L., & Mao, Z. (2015). Infrared stealth property study of mesoporous carbon-aluminum doped zinc oxide coated cotton fabrics. Textile Research Journal, 85(10), 1065-1075. doi:10.1177/0040517514559586
  34. Wei, Q. F., Xu, W. Z., Ye, H., & Huang, F. L. (2006). Surface funtionalization of polymer fibers by sputter coating. Journal of Industrial Textiles, 35(4), 287-294. doi:10.1177/1528083706060783
  35. Xu, Y.-Y., Cai, Z.-S., He, K.-L., & Zhang, J.-L. (2009). Near-infrared camouflage of cotton fabric under different background. Textile Auxiliaries, 3. Retrieved from
  36. Zhang, H., & Zhang, J. Ch. (2008). Near-infrared green camouflage of cotton fabrics using vat dyes. The Journal of the Textile Institute, 99(1), 83-88. doi:10.1080/00405000701556392
  37. Zhou, L., Shao, J.-Z., & Chai, L.-Q. (2010). Study on the camouflage-protective and dyeing properties of natural dye indigo. Journal of Donghua University (English Edition), (1), 46-51.