Synthesis and Printability of Aqueous Ceramic Ink with Graft Polymer

Graft Polymer를 이용한 수계 세라믹 잉크의 합성 및 프린팅 특성평가

  • Lee, Ji-Hyeon (Ceramicware Technology Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Hae-Jin (Division of Material Science and Engineering, Inha University) ;
  • Kim, Jin-Ho (Ceramicware Technology Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Kwang-Taek (Ceramicware Technology Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Han, Kyu-Sung (Ceramicware Technology Center, Korea Institute of Ceramic Engineering and Technology)
  • 이지현 (한국세라믹기술원 도자융합기술센터) ;
  • 황해진 (인하대학교 신소재공학과) ;
  • 김진호 (한국세라믹기술원 도자융합기술센터) ;
  • 황광택 (한국세라믹기술원 도자융합기술센터) ;
  • 한규성 (한국세라믹기술원 도자융합기술센터)
  • Received : 2019.07.23
  • Accepted : 2019.09.19
  • Published : 2019.10.27


Ink-jet printing is a manufacturing process technology that directly prints a digitalized design pattern onto a substrate using a fine ink jetting system. In this study, environmentally friendly yellow aqueous ceramic ink is synthesized by mixture of distilled water, yellow ceramic pigment and additives for ink-jet printing. The graft polymer, which combines electrostatic repulsion and steric hindrance mechanism, is used as a surfactant for dispersion stability of aqueous ceramic ink. Synthesized ceramic ink with graft polymer surfactant shows better dispersion stability than did ceramic ink with PAA surfactant; synthesized ink also shows desirable ink-jet printability with the formation of a single ink droplet during printability test. Finally, ceramic ink printed on glass substrate and ceramic ink with graft polymer surfactant shows a high contact angle without surface treatment on glass substrate. Consequently, it is confirmed that the ceramic ink with graft polymer surfactant can achieve high printing resolution without additional surface treatment process.


Supported by : Ministry of Trade, Industry and Energy


  1. P. J. Smith and J. Stringer, Fundamentals of inkjet printing: the science of inkjet and droplets, p.397, S. D. Hoath, John Wiley & Sons, Germany (2016).
  2. K. M. Jeong, J. M. Won, Y. K. Lee and K. Koseki, J. Korea TAPPI, 46, 46 (2014).
  3. O. Watanabe, T. Hibino and M. Sakakibara, Qualicer 2012 XII Global Forum on Ceramic Tile, 73, 73 (2012).
  4. L. Creagh, M. McDonald and W. Letendre, Equipment for Electronic Products Manufacturing, 8, 9 (2004).
  5. C. S. Kim, S. J. Park, W. Sim, Y. J. Kim and Y. Yoo, Comput. Fluids, 38, 602 (2009).
  6. Y. Yoshioka, P. D. Calvert and G. E. Jabbour, Macromol. Rapid Commun., 26, 238 (2005).
  7. M. He, O. Stoevesandt, E. A. Palmer, F. Khan, O. Ericsson and M. J. Taussig, Nat. Methods, 5, 175 (2008).
  8. J. T. Delaney, P. J. Smith and U. S. Schubert, Soft Matter, 5, 4866 (2009).
  9. S. Ilkhanizadeh, A. I. Teixeira and O. Hermanson, Biomater., 28, 3936 (2007).
  10. H. Kobayashi, M. Matsuoka, M. Nagae, H. Honda, T. Suzuki, K. Ogawa and H. Maeda, Soc. Imaging Sci. Technol., 2, 903 (2008).
  11. M. Singlard, A. Aimable, M. Lejeune, C. Dossou-Yovo, M. Poncelet, R. Noguera and C. Modes, Powder. Technol., 266, 303 (2014).
  12. G. L. Gungor, A. Kara, D. Gardini, M. Blosi, M. Dondi and C. Zanelli, Dyes Pigm., 127, 148 (2016).
  13. E. A. Clark, M. R. Alexander, D. J. Irvine, C. J. Roberts, M. J. Wallace, S. Sharpe, J. Yoo, R. J. M. Hague, C. J. Tuck and R. D. Wildman, Int. J. Pharm., 529, 523 (2017).
  14. E. Saleh, P. Woolliams, B. Clarke, A. Gregory, S. Greedy, C. Smartt, R. Wildman, I. Ashcroft, R. Hague, P. Dickens and C. Tuck, Addit. Manuf., 13, 143 (2017).
  15. Z. Pan, Y. Wang, H. Huang, Z. Ling, Y. Dai and S. Ke, Ceram. Int., 41, 12515 (2015).
  16. G. Ferrari and P. Zannini, Bol. Soc. Esp. Ceram. vidr., 56, 226 (2017).
  17. N. F. Morrison and O. G. Harlen, Rheol. acta, 49, 619 (2010).
  18. N. Reis, C. Ainsley and B. Derby, J. Appl. Phys., 97, 094903 (2005).
  19. A. Friederich, J. R. Binder and W. Bauer, J. Am. Ceram. Soc., 96, 2093 (2013).
  20. C. P. Whitby, P. J. Scales, F. Grieser, T. W. Healy, G. Kirby, J. A. Lewis and C. F. Zukoski, J. Colloid. Interface Sci., 262, 274 (2003).
  21. D. Kuscer, G. Stavber, G. Trefalt and M. Kosec, J. Am. Ceram. Soc., 95, 487 (2012).
  22. H. E. Hoefdraad, J. Inor. Nucl. Chem., 37, 1917 (1975).
  23. D. Pawlak, Z. Frukacz, Z. Mierczyk, A. Suchocki and J. Zachara, J. Alloy. Comp., 275, 361 (1998).
  24. G. De, A. Licciulli and M. Nacucchi, J. Non-Crys. Solid., 201, 153 (1996).
  25. C. Lemarchand, P. Couvreur, C. Vauthier, D. Costantini and R. Gref, Int. J. Pharm., 254, 77 (2003).
  26. O. Mengual, G. Meunier, I. Cayre, K. Puech and P. Snabre, Talanta, 50, 445 (1999).
  27. J. H. Lee, H. J. Hwang, J. H. Kim, K. T. Hwang and K. S. Han, J. Kor. Ceram Soc., 53, 75 (2016).
  28. V. S. Solana, Qualicer, 14, 1 (2014).
  29. J. Stringer and B. Derby, J. Eur. Ceram. Soc., 29, 913 (2009).
  30. B. Derby, N. Reis, K. A. M. Seerden, P. S. Grant and J. R. G. Evans, MRS Online Proceedings Library Archive, 625, 195 (2000).
  31. N. Reis and B. Derby, MRS Online Proceedings Library Archive, 625, 117 (2000).