Cyclodextrins' effect on the enatioseparation of some PPIs and capillary electrophoresis method development for determining rabeprazole enantiomers

  • Choi, Yusung (College of Pharmacy, Kangwon National University) ;
  • Pham, Thuy-Vy (College of Pharmacy, Kangwon National University) ;
  • Mai, Xuan-Lan (College of Pharmacy, Kangwon National University) ;
  • Truong, Quoc-Ky (Pharmacy Faculty, Pham Ngoc Thach University of Medicine) ;
  • Le, Thi-Anh-Tuyet (College of Pharmacy, Kangwon National University) ;
  • Nguyen, Thi-Ngoc-Van (Pharmacy Faculty, Can Tho University of Medicine and Pharmacy) ;
  • Lee, Gunhee (College of Pharmacy, Kangwon National University) ;
  • Kang, Jong-Seong (College of Pharmacy, Chungnam National University) ;
  • Mar, Woongchon (College of Pharmacy, Seoul National University) ;
  • Kim, Kyeong Ho (College of Pharmacy, Kangwon National University)
  • Received : 2019.08.20
  • Accepted : 2017.10.07
  • Published : 2019.10.25


Over the past decades, chiral switch of the proton pump inhibitors (PPIs) has been received widespread attention in therapeutic advantages as well as pharmaceutical analysis. In present study, the influence of cyclodextrins (CDs) on the chiral separation of four common PPIs (lansoprazole, omeprazole, pantoprazole, and rabeprazole) was investigated. The results demonstrated that capillary electrophoresis (CE) with dual CDs as a chiral selector system is a possible and promising method for the enantioseparation of these PPIs. Rabeprazole, which is the most challenging and acid-labile candidate among four PPIs, was selected for further development of the technique. To optimize CE condition, the effects of capillary parameters and background electrolytes on the enantioseparation were investigated. Finally, the best chiral separation was acheived by using sulfobutyl ether-${\beta}$-CD, and ${\gamma}$-CD as dual chiral selectors. The developed CE method not only provided the effective chiral separation but also showed the good stability of rabeprazole. The proposed method was successfully validated according to the International Conference on Harmonization guideline and effectively applied to determine rabeprazole enantiomers in commercial rabeprazole tablets, with recoveries ranging from 97.17 % to 103.29 % of the label content.


Capillary electrophoresis;Enatioseparation;Cyclodextrins;Rabeprazole enantiomers;Proton pump inhibitors


  1. M. E. El-kommos, P. Y. Khashaba, H. R. H. Ali, and M. M. El-wekil, J. Liq. Chromatogr. Relat. Technol., 38(18), 1639-1659 (2015).
  2. S. L. Bodhankar, B. B. Jain, B. P. Ahire, R. B. Daude, and P. P. Shitole, Indian J. Pharmaco., 38(5), 357-358 (2006).
  3. V. Pai and N. Pai, World J Gastroenterol., 13(30), 4100-4102 (2007).
  4. Q. Zhou, X. F. Yan, W. S. Pan, and S. Zeng, World J. Gastroenterol., 14(16), 2617-2619 (2008).
  5. K. R. Lee, N. V. T. Nguyen, Y. J. Lee, S. Choi, J. S. Kang, and K. H. Kim, Arch Pharm. Res., 38(5), 826- 833 (2015).
  6. M. Fillet, B. Chankvetadze, J. Crommen, and G. Blaschke, Electrophoresis, 20(13), 2691-2697 (1999).<2691::AID-ELPS2691>3.0.CO;2-S
  7. J. M. Saz and M. L. Marina, J. Chromatogr. A, 1467, 79-94 (2016).
  8. N. Cao, L. Liu, Y. B. Hao, L. L. Sun, Q. G. Zou, X. L. Ma, and K. H. Xiong, Anal. Methods, 8, 1405-1414 (2016).
  9. L. N. Chennuru, T. Choppari, S. Duvvuri, and P. K. Dubey, J. Sep. Sci., 36(18), 3004-3010 (2013).
  10. M. R. Kim, S. K. Yu, Q. K. Truong, X. L. Mai, H. K. Chung, J. S. Kang, and K. H. Kim, Arch. Pharm. Res., 40(3), 373-381 (2017).
  11. R. N. Rao, A. N. Raju, and D. Nagaraju, Talanta, 70(4), 805-810 (2006).
  12. R. Cirilli, R. Ferretti, B. Gallinella, E. De Santis, L. Zanitti, and F. L. Torre, J. Chromatogr. A, 1177(1), 105-113 (2008).
  13. H. K. Chung, Q. K. Truong, X. L. Mai, Y. S. Choi, J. S. Kang, W. C. Mar, and K. H. Kim, Arch. Pharm. Res., 40(8), 962-971 (2017).
  14. P. Estevez, S. Flor, O. Boscolo, V. Tripodi, and S. Lucangioli, Electrophoresis, 35(6), 804-810 (2014).
  15. G. Hancu, L. A. Papp, and A. Rusu, Chromatographia, 78(3-4), 279-284 (2015).
  16. J. J. B. Nevado, G. C. Penalvol, and R. M. R. Dorado, Anal. Chim. Acta., 533(2), 127-133 (2005).
  17. J. J. B. Nevado, G. C. Penalvo1, J. C. J. Sanchez, M. C. Mochon, R. M. R. Dorado, and M. V. Navarro, Electrophoresis, 30(16), 2940-2946 (2009).
  18. L. A. Papp, G. Hancu, A. Gyeresi, H. Kelemen, Z. I. Szabo, B. Noszal, P. Dubsky, and G. Toth, Electrophoresis, 1-7 (2019).
  19. Z. Ma, L. Zhang, L. Jin, P. Ji, and X. Guo, Biomed. Chromatogr., 24(12), 1332-1337 (2010).
  20. H. Fabre and K. D. Altria, LC GC Eur., 14(5), 1-5 (2011).
  21. K. D. Altria, LC GC Eur., 15(9), 588-594 (2002).
  22. J. M. Shin and Na, Kim, J. Neurogastroenterol. Motil., 19(1), 25-35 (2013).
  23. B. Chankvetadze, 'Capillary electrophoresis in chiral analysis', Wiley, Chinchester, 1997.
  24. R. Buchireddy, K. Mukkanti, P. Srinivasulu, and K. S. V. Srinivas, Chromatographia, 68(3-4), 275-280 (2008).
  25. A. Guttman and N. Cooke, J. Chromatogr. A, 680(1), 157-162 (1994).
  26. S. G. Penn, D. M. Goodall, and J. S. Loran, J. Chromatogr. A, 636(1), 149-152 (1993).
  27. A. Shibukawa, D. K. Lloyd, and I. W. Wainer, Chromatographia, 35(7-8), 419-429 (1993).