• Lee, Hojoo (Department of Mathematics and Institute of Pure and Applied Mathematics Jeonbuk National University)
  • Received : 2018.05.29
  • Accepted : 2019.09.25
  • Published : 2019.12.30


Using the complex parabolic rotations of holomorphic null curves in ℂ4 we transform minimal surfaces in Euclidean space ℝ3 to a family of degenerate minimal surfaces in Euclidean space ℝ4. Applying our deformation to holomorphic null curves in ℂ3 induced by helicoids in ℝ3, we discover new minimal surfaces in ℝ4 foliated by hyperbolas or straight lines. Applying our deformation to holomorphic null curves in ℂ3 induced by catenoids in ℝ3, we rediscover the Hoffman-Osserman catenoids in ℝ4 foliated by ellipses or circles.


  1. J. Bernstein and C. Breiner, Symmetry of embedded genus 1 helicoids, Duke Math. J. 159 (2011), no. 1, 83-97.
  2. E. Calabi, Isometric imbedding of complex manifolds, Ann. of Math. (2) 58 (1953), 1-23.
  3. I. Castro and F. Urbano, On a minimal Lagrangian submanifold of $C^n$ foliated by spheres, Michigan Math. J. 46 (1999), no. 1, 71-82.
  4. M. Dajczer and R. Tojeiro, All superconformal surfaces in $R^4$ in terms of minimal surfaces, Math. Z. 261 (2009), no. 4, 869-890.
  5. M. Deutsch, Integrable deformation of critical surfaces in spaceforms, Bull. Braz. Math. Soc. (N.S.) 44 (2013), no. 1, 1-23.
  6. U. Dierkes, S. Hildebrandt, and F. Sauvigny, Minimal surfaces, revised and enlarged second edition, Grundlehren der Mathematischen Wissenschaften, 339, Springer, Heidelberg, 2010.
  7. E. Goursat, Sur un mode de transformation des surfaces minima, Acta Math. 11 (1887), no. 1-4, 135-186.
  8. R. Harvey and H. B. Lawson, Jr., Calibrated geometries, Acta Math. 148 (1982), 47-157.
  9. D. A. Hoffman and R. Osserman, The geometry of the generalized Gauss map, Mem. Amer. Math. Soc. 28 (1980), no. 236, iii+105 pp.
  10. D. Joyce, Constructing special Lagrangian m-folds in $C^m$ by evolving quadrics, Math. Ann. 320 (2001), no. 4, 757-797.
  11. O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space $L^3$, Tokyo J. Math. 6 (1983), no. 2, 297-309.
  12. H. B. Lawson, Jr., Some intrinsic characterizations of minimal surfaces, J. Analyse Math. 24 (1971), 151-161.
  13. K. Leschke and K. Moriya, Applications of quaternionic holomorphic geometry to minimalsurfaces, Complex Manifolds 3 (2016), no. 1, 282-300. coma-2016-0015
  14. F. J. Lopez, R. Lopez, and R. Souam, Maximal surfaces of Riemann type in Lorentz-Minkowski space $L^3$, Michigan Math. J. 47 (2000), no. 3, 469-497.
  15. F. J. Lopez and A. Ros, On embedded complete minimal surfaces of genus zero, J. Differential Geom. 33 (1991), no. 1, 293-300. 1214446040
  16. W. H. Meeks, III, and J. Perez, A survey on classical minimal surface theory, University Lecture Series, 60, American Mathematical Society, Providence, RI, 2012.
  17. W. H. Meeks, III, and J. Perez, The Riemann minimal examples, in The legacy of Bernhard Riemann after one hundred and fifty years. Vol. II, 417-457, Adv. Lect. Math. (ALM), 35.2, Int. Press, Somerville, MA, 2016.
  18. W. H. Meeks, III, and H. Rosenberg, The uniqueness of the helicoid, Ann. of Math. (2) 161 (2005), no. 2, 727-758.
  19. P. Mira and J. A. Pastor, Helicoidal maximal surfaces in Lorentz-Minkowski space, Monatsh. Math. 140 (2003), no. 4, 315-334.
  20. I. M. Mladenov and B. Angelov, Deformations of minimal surfaces, in Geometry, integrability and quantization (Varna, 1999), 163-174, Coral Press Sci. Publ., Sofia, 2000.
  21. K. Moriya, Super-conformal surfaces associated with null complex holomorphic curves, Bull. Lond. Math. Soc. 41 (2009), no. 2, 327-331.
  22. A. Moroianu and S. Moroianu, Ricci surfaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14 (2015), no. 4, 1093-1118.
  23. R. Osserman, A Survey of Minimal Surfaces, second edition, Dover Publications, Inc., New York, 1986.
  24. S.-H. Park, Circle-foliated minimal surfaces in 4-dimensional space forms, Bull. Korean Math. Soc. 52 (2015), no. 5, 1433-1443.
  25. J. Perez and A. Ros, Some uniqueness and nonexistence theorems for embedded minimal surfaces, Math. Ann. 295 (1993), no. 3, 513-525.
  26. J. Perez and A. Ros, Properly embedded minimal surfaces with finite total curvature, in The global theory of minimal surfaces in flat spaces (Martina Franca, 1999), 15-66, Lecture Notes in Math., 1775, Fond. CIME/CIME Found. Subser, Springer, Berlin, 2002.
  27. B. Riemann, Uber die Flachen vom Kleinsten Inhalt be gegebener Begrenzung, Abh. Konigl. Ges. Wiss. Gottingen, Math. Kl. 13 (1868), 329-333.
  28. P. Romon, Symmetries and conserved quantities for minimal surfaces, preprint, 1997.
  29. A. Ros, Embedded minimal surfaces: forces, topology and symmetries, Calc. Var. Partial Differential Equations 4 (1996), no. 5, 469-496.
  30. R. M. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983), no. 4, 791-809 (1984).
  31. M. Shiffman, On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes, Ann. of Math. (2) 63 (1956), 77-90.