DOI QR코드

DOI QR Code

High Thermal Conductive Natural Rubber Composites Using Aluminum Nitride and Boron Nitride Hybrid Fillers

  • Chung, June-Young (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • Lee, Bumhee (Department of Energy Science, Sungkyunkwan University) ;
  • Park, In-Kyung (Department of Polymer Science and Engineering, Sungkyunkwan University) ;
  • Park, Hyun Ho (Elastomer & Tribology Materials Development Team, Hyundal Motor Company) ;
  • Jung, Heon Seob (Elastomer & Tribology Materials Development Team, Hyundal Motor Company) ;
  • Park, Joon Chul (Elastomer & Tribology Materials Development Team, Hyundal Motor Company) ;
  • Cho, Hyun Chul (Elastomer & Tribology Materials Development Team, Hyundal Motor Company) ;
  • Nam, Jae-Do (Department of Polymer Science and Engineering, Sungkyunkwan University)
  • Received : 2020.02.11
  • Accepted : 2020.02.20
  • Published : 2020.03.31

Abstract

Herein, we investigated the thermal conductivity and thermal stability of natural rubber composite systems containing hybrid fillers of boron nitride (BN) and aluminum nitride (AlN). In the hybrid system, the bimodal distribution of polygonal AlN and planar BN particles provided excellent filler-packing efficiency and desired energy path for phonon transfer, resulting in high thermal conductivity of 1.29 W/mK, which could not be achieved by single filler composites. Further, polyethylene glycol (PEG) was compounded with a commonly used naphthenic oil, which substantially increased thermal conductivity to 3.51 W/mK with an excellent thermal stability due to facilitated energy transfer across the filler-filler interface. The resulting PEG-incorporated hybrid composite showed a high thermal degradation temperature (T2) of 290℃, a low coefficient of thermal expansion of 26.4 ppm/℃, and a low thermal distortion parameter of 7.53 m/K, which is well over the naphthenic oil compound. Finally, using the Fourier's law of conduction, we suggested a modeling methodology to evaluate the cooling performance in thermal management system.

Acknowledgement

Supported by : The Rubber Society of Korea Scholarship

References

  1. N. T. Selvan, S. B. Eshwaran, A. Das, K. W. Stockelhuber, S. Wie$\ss$ner, P. Potschke, G. B. Nando, A. I. Chevanyov, and G. Heinrich, "Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications", Sensors and Actuators A, 239, 102 (2016). https://doi.org/10.1016/j.sna.2016.01.004
  2. J. R. Riba, N. Gonzalez, T. Canals, and R. Cantero, "Identification of natural rubber samples for high-voltage insulation applications", Computers and Chemical Engineering, 124, 197 (2019). https://doi.org/10.1016/j.compchemeng.2019.01.016
  3. R. H. Sun, H. Yao, H. B. Zhang, Y. Li, Y. W. Mai, and Z. Z. Yu, "Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites", Composites Science and Technology, 137, 16 (2016). https://doi.org/10.1016/j.compscitech.2016.10.017
  4. T. Kusunose, T. Yagi, S. H. Firoz, and T. Sekinod, "Fabrication of epoxy/silicon nitride nanowire composites and evaluation of their thermal conductivity", J. Mater. Chem. A, 1, 3440 (2013). https://doi.org/10.1039/c3ta00686g
  5. J. W. Gu, Q. Y. Zhang, J. Dang, J. P. Zhang, and Z. Y. Yang, "Thermal Conductivity and Mechanical Properties of Aluminum Nitride Filled Linear Low-Density Polyethylene Composites", Polym. Eng. Sci., 49, 1030 (2009). https://doi.org/10.1002/pen.21336
  6. S. Yu, P. Hing, and X. Hu, "Thermal conductivity of polystyrene-aluminum nitride composite", Composites. Part A, 33, 289 (2002). https://doi.org/10.1016/S1359-835X(01)00107-5
  7. W. Zhou, S. Qi, Q. An, H. Zhao, and N. Liu, "Thermal conductivity of boron nitride reinforced polyethylene composites", Materials Research Bulletin, 42, 1863 (2007). https://doi.org/10.1016/j.materresbull.2006.11.047
  8. K. H. Kim, M. J. Kim, Y. S. Hwang, and J. H. Kim, "Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity", Ceramics International, 40, 2047 (2014). https://doi.org/10.1016/j.ceramint.2013.07.117
  9. J. P. Hong, S. W. Yoon, T. S. Hwang, Y. K. Lee, S. H. Won, and J. D. Nam, "Interphase control of boron nitride/epoxy composites for high thermal conductivity", Korea-Australia Rheology Journal, 22, 259 (2010).
  10. H. Hong, J. U. Kim, and T. I. Kim, "Effective Assembly of Nano-Ceramic Materials for High and Anisotropic Thermal Conductivity in a Polymer Composite", Polymers, 9, 413 (2017). https://doi.org/10.3390/polym9090413
  11. Y. C. Kim, H. S. Min, J. S. Yu, S. Y. Hong, M. Wang, S. H. Kim, J. H. Suhr, Y. K. Lee, K. J. Kim, and J. D. Nam, "Forced infiltration of silica beads into densely packed glass fibre beds for thin composite laminates", RSC. Adv., 6, 91341 (2016). https://doi.org/10.1039/C6RA14969C
  12. X. G. Huang, T. Iizuka, P. K. Jiang, Y. Ohki, and T. Tanaka, "Role of Interface on the Thermal Conductivity of Highly Filled Dielectric Epoxy/AlN Composites", J. Phys. Chem. C, 116, 13629 (2012). https://doi.org/10.1021/jp3026545
  13. E. M. Alawadhi and C. H. Amon, "Performance analysis of an enhanced PCM thermal control unit", ITHERM, 10, 1109 (2000).
  14. S. F. Hosseinizadeh, F. I. Tan, and S. M. Moosania, "Experimental and numerical studies on performance of PCM-based heat sink with different configurations of internal fins", Applied Thermal Engineering, 31, 3827 (2011). https://doi.org/10.1016/j.applthermaleng.2011.07.031
  15. B. Agostini, M. Fabbri, J. E. Park, L. Wojtan, J. R. Thome, and B. Michel, "State of the Art of High Heat Flux Cooling Technologies", Heat Transfer Engineering, 28, 258 (2007). https://doi.org/10.1080/01457630601117799
  16. D. Kumlutas, H. Ismail, and M. Tavman, "Thermal Conductivity of Particle Filled Polyethylene Composite Materials", Composites Science and Technology, 63, 113 (2003). https://doi.org/10.1016/S0266-3538(02)00194-X
  17. R. J. Samuels and N. E. Mathis, "Orientation Specific Thermal Properties of Polyimide Film", J. Electron. Packag, 123, 273 (2001). https://doi.org/10.1115/1.1347986
  18. S. H. Xie, B. K. Zhu, J. B. Li, X. Z. Wei, and Z. K. Xu, "Preparation and properties of polyimied/aluminum nitride composites", Polymer Testing, 23, 797 (2004). https://doi.org/10.1016/j.polymertesting.2004.03.005
  19. J. W. Kim, D. H. Lee, H. J. Jeon, S. I. Jang, H. M. Cho, and Y. M. Kim, "Recyclable thermosetting thermal pad using silicone-based polyurethane crosslinked by Diels-Alder adduct", Applied Surface Science, 429, 128 (2018). https://doi.org/10.1016/j.apsusc.2017.09.003
  20. R. Schneider, S. R. Luthi, K. Albrecht, M. Brulisauer, A. Bernard, and T. Geiger, "Transparent Silicone Calcium Fluoride Nanocomposite with Improved Thermal Conductivity", Macromol. Mater. Eng., 300, 80 (2015). https://doi.org/10.1002/mame.201400172
  21. N. Balachander, I. Seshadri, R. J. Mehta, L. S. Schadler, T. B. Tasciuc, P. Keblinski, and G. Ramanath, "Nanowire-filled polymer composites with ultrahigh thermal conductivity", Appl. Phys. Lett., 102, 93 (2013).
  22. J. E. Mark, B. Erman, and M. Roland, The Science and Technology of Rubber, Academic press (2013).
  23. Y. P. Mamunya, V. Davydenko, P. Pissis, and E. Lebedev, "Electrical and thermal conductivity of polymer filled with metal powders", European Polymer Journal, 38, 1887 (2002). https://doi.org/10.1016/S0014-3057(02)00064-2
  24. V. Singh, T. L. Bougher, A. Weathers, Y. Cai, K. Bi, M. T. Pettes, S. A. McMenamin, W. Lv, D. P. Resler, T. R. Gattuso, D. H. Altman, K. H. Sandhage, A. Henry, and B. A. Cola, "High thermal conductivity of chain-oriented amorphous polythiophene", Nature Nanotechnology, 9, 384 (2014). https://doi.org/10.1038/nnano.2014.44
  25. C. C. Teng, C. C. M. Ma, C. H. Lu, S. Y. Yang, S. H. Lee, M. C. Hsiao, M. Y. Yen, K. C. Chiou, and T. M. Lee, "Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites", Carbon, 49, 5107 (2011). https://doi.org/10.1016/j.carbon.2011.06.095
  26. C. Du, M. Li, M. Cao, S. Feng, H. Guo, and B. Li, "Enhanced thermal and mechanical properties of polyvinlydene fluoride composites with magnetic oriented carbon nanotube", Carbon, 126, 197 (2018). https://doi.org/10.1016/j.carbon.2017.10.027
  27. H. Fang, S. L. Bai, and C. P. Wong, ""White graphene"-hexagonal boron nitride based polymeric composites and their application in thermal management", Composites Communications, 2, 19 (2016). https://doi.org/10.1016/j.coco.2016.10.002
  28. W. Y. Zhou, S. H. Qi, H. Z. Zhao, and N. L. Liu, "Thermally Conductive Silicone Rubber Reinforced With Boron Nitride Particle", Polym. Compos., 28, 23 (2007). https://doi.org/10.1002/pc.20296
  29. J. P. Hong, S. W. Yoon, T. S. Hwang, J. S. Oh, S. C. Hong, Y. K. Lee, and J. D. Nam, "High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers", Thermochimica Acta, 537, 70 (2012). https://doi.org/10.1016/j.tca.2012.03.002
  30. B. L. Zhu, J. Ma, J. Wu, K. C. Yung, and C. S. Xie, "Study on the properties of the epoxy-matrix composites filled with thermally conductive AlN and BN ceramic particles", J. Appl. Polym. Sci., 118, 2754 (2010). https://doi.org/10.1002/app.32673
  31. Z. L. Li, D. D. Ju, L. J. Han, and L. S. Dong, "Formation of more efficient thermally conductive pathways due to the synergistic effect of boron nitride and alumina in poly(3-hydroxylbutyrate)", Thermochimica Acta, 657, 9 (2017).
  32. A. V. Herk, Chemisty and Technology of Emulsion Polymerisation, Blackwell Publishing (2005).
  33. J. C. Gonzalez, J. L. Valentin, M. Arroyo, K. Saalwachter, and M. A. L. Manchado, "Natrual rubber/clay nanocomposites: Influence of poly(ethylene glycol) on the silicate dispersion and local chain order of rubber network", European Polymer Journal, 44, 3493 (2008). https://doi.org/10.1016/j.eurpolymj.2008.08.046
  34. Y. Akagi, T. Katashima, Y. Katsumoto, K. Fujin, T. Matsunaga, U. Chung, M. Shibayama, and T. Sakai, "Examination of the Theories of Rubber Elasticity Using an Ideal Polymer Network", Macromolecules, 44, 5817 (2011). https://doi.org/10.1021/ma201088r
  35. W. S. Kim, H. J. Paik, J. W. Bae, and W. H. Kim, "Effect of polyethylene glycol on the properties of styrene-butadiene rubber/organoclay nanocomposites filled with silica and carbon black", J. Appl. Polym. Sci., 122, 1766 (2011). https://doi.org/10.1002/app.34120
  36. L. Wang, W. Fu, W. Peng, H. Xiao, S. Li, J. Huang, and C. Liu, "Enhancing Mechanical and Thermal Properties of polyurethane Rubber Reinforced with Polyethylene Glycol-g-Graphene Oxide", Advances in Polymer Technology, 3, 1 (2019).
  37. T. Qi, Y. Li, Y. Cheng, and F. Xiao, "Surface treatments of hexagonal boron nitride for thermal conductive epoxy composites", IEEE, 405 (2014).
  38. M. Z. Rong, M. Q. Zhang, and W. H. Ruan, "Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review", Materials Science and Technology, 22, 787 (2006). https://doi.org/10.1179/174328406X101247
  39. W. Peng, X. Huang, J. Yu, P. Jiang, and W. Liu, "Electrical and thermophysical properties of epoxy/aluminum nitride nanocomposites: Effects of nanoparticle surface modification", Composites Part A, 41, 1201 (2010). https://doi.org/10.1016/j.compositesa.2010.05.002
  40. J. Hou, G. Li, N. Yang, L. Qin, M. E. Grami, Q. Zhang, N. Wang, and X. Qu, "Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity", RSC. Adv., 4, 44282 (2014). https://doi.org/10.1039/C4RA07394K
  41. F.P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Principles of Heat and Mass Transfer, John Wiley & Sons United States of America (2013).
  42. D. Shen, Z. Zhan, Z. Liu, Y. Cao, L. Zhou, Y. Liu, W. Dei, K. Nishimura, C. Li, C. T. Lin, N. Jiang, and J. Yu, "Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires", Scientific Reports, 7, 1 (2017). https://doi.org/10.1038/s41598-016-0028-x
  43. A. Zanchet, P. S. Garcia, R. C. R. Nunes, J. S. Crespo, and C. H. Scuracchio, "Sustainable Natural Rubber Compounds: Naphthenic Oil Exchange for another Alternative from Renewable Source", Int. Ref. J. Eng. Sci., 4, 10 (2016).
  44. Y. Kou, S. Wang, J. Luo, K. Sun, J. Zhang, Z. Tan, and Q. Shi, "Thermal analysis and heat capacity study of polyethylene glycol (PEG) phase change materials for thermal energy storage applications", The Journal of Chemical Thermodynamics, 128, 259 (2019). https://doi.org/10.1016/j.jct.2018.08.031