DOI QR코드

DOI QR Code

A NOTE ON COHOMOLOGICAL DIMENSION OVER COHEN-MACAULAY RINGS

  • Bagheriyeh, Iraj (Department of Mathematics Faculty of Sciences University of Mohaghegh Ardabili) ;
  • Bahmanpour, Kamal (Department of Mathematics Faculty of Sciences University of Mohaghegh Ardabili) ;
  • Ghasemi, Ghader (Department of Mathematics Faculty of Sciences University of Mohaghegh Ardabili)
  • Received : 2019.02.10
  • Accepted : 2019.07.26
  • Published : 2020.03.31

Abstract

Let (R, m) be a Noetherian local Cohen-Macaulay ring and I be a proper ideal of R. Assume that βR(I, R) denotes the constant value of depthR(R/In) for n ≫ 0. In this paper we introduce the new notion γR(I, R) and then we prove the following inequalities: βR(I, R) ≤ γR(I, R) ≤ dim R - cd(I, R) ≤ dim R/I. Also, some applications of these inequalities will be included.

References

  1. K. Bahmanpour, Cohen-Macaulay modules over Noetherian local rings, Bull. Korean Math. Soc. 51 (2014), no. 2, 373-386. https://doi.org/10.4134/BKMS.2014.51.2.373 https://doi.org/10.4134/BKMS.2014.51.2.373
  2. K. Bahmanpour, Exactness of ideal transforms and annihilators of top local cohomology modules, J. Korean Math. Soc. 52 (2015), no. 6, 1253-1270. https://doi.org/10.4134/JKMS.2015.52.6.1253 https://doi.org/10.4134/JKMS.2015.52.6.1253
  3. K. Bahmanpour and M. S. Samani, On the cohomological dimension of nitely generated modules, Bull. Korean Math. Soc. 55 (2018), no. 1, 311-317. https://doi.org/10.4134/BKMS.b161017 https://doi.org/10.4134/BKMS.b161017
  4. M. Brodmann, Asymptotic stability of Ass(M/$I^n$ M), Proc. Amer. Math. Soc. 74 (1979), no. 1, 16-18. https://doi.org/10.2307/2042097 https://doi.org/10.2307/2042097
  5. M. Brodmann, The asymptotic nature of the analytic spread, Math. Proc. Cambridge Philos. Soc. 86 (1979), no. 1, 35-39. https://doi.org/10.1017/S030500410000061X https://doi.org/10.1017/S030500410000061X
  6. M. P. Brodmann and R. Y. Sharp, Local Cohomology, second edition, Cambridge Studies in Advanced Mathematics, 136, Cambridge University Press, Cambridge, 2013.
  7. K. Divaani-Aazar, R. Naghipour, and M. Tousi, Cohomological dimension of certain algebraic varieties, Proc. Amer. Math. Soc. 130 (2002), no. 12, 3537-3544. https://doi.org/10.1090/S0002-9939-02-06500-0 https://doi.org/10.1090/S0002-9939-02-06500-0
  8. G. Faltings, Uber lokale Kohomologiegruppen hoher Ordnung, J. Reine Angew. Math. 313 (1980), 43-51. https://doi.org/10.1515/crll.1980.313.43
  9. G. Ghasemi, K. Bahmanpour, and J. A'zami, Upper bounds for the cohomological dimensions of nitely generated modules over a commutative Noetherian ring, Colloq. Math. 137 (2014), no. 2, 263-270. https://doi.org/10.4064/cm137-2-10 https://doi.org/10.4064/cm137-2-10
  10. R. Hartshorne, Local Cohomology, A seminar given by A. Grothendieck, Harvard University, Fall, 1961. Lecture Notes in Mathematics, No. 41, Springer-Verlag, Berlin, 1967.
  11. R. Hartshorne, Cohomological dimension of algebraic varieties, Ann. of Math. (2) 88 (1968), 403-450. https://doi.org/10.2307/1970720 https://doi.org/10.2307/1970720
  12. C. Huneke and G. Lyubeznik, On the vanishing of local cohomology modules, Invent. Math. 102 (1990), no. 1, 73-93. https://doi.org/10.1007/BF01233420 https://doi.org/10.1007/BF01233420
  13. H. Matsumura, Commutative Ring Theory, translated from the Japanese by M. Reid, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1986.
  14. A. A. Mehrvarz, K. Bahmanpour, and R. Naghipour, Arithmetic rank, cohomological dimension and lter regular sequences, J. Algebra Appl. 8 (2009), no. 6, 855-862. https://doi.org/10.1142/S0219498809003692 https://doi.org/10.1142/S0219498809003692
  15. L. J. Ratli, Jr., On prime divisors of $I^n$, n large, Michigan Math. J. 23 (1976), no. 4, 337-352 (1977). http://projecteuclid.org/euclid.mmj/1029001769