DOI QR코드

DOI QR Code

GLOBAL SOLUTION AND BLOW-UP OF LOGARITHMIC KLEIN-GORDON EQUATION

  • Ye, Yaojun (Department of Mathematics and Information Science Zhejiang University of Science and Technology)
  • Received : 2019.02.17
  • Accepted : 2019.12.18
  • Published : 2020.03.31

Abstract

The initial-boundary value problem for a class of semilinear Klein-Gordon equation with logarithmic nonlinearity in bounded domain is studied. The existence of global solution for this problem is proved by using potential well method, and obtain the exponential decay of global solution through introducing an appropriate Lyapunov function. Meanwhile, the blow-up of solution in the unstable set is also obtained.

Acknowledgement

Supported by : Natural Science Foundation of Zhejiang Province

References

  1. K. Agre and M. A. Rammaha, Systems of nonlinear wave equations with damping and source terms, Differential Integral Equations 19 (2006), no. 11, 1235-1270.
  2. J. D. Barrow and P. Parsons, Inflationary models with logarithmic potentials, Phys. Rev. D 52 (1995), 5576-5587.
  3. K. Bartkowski and P. Gorka, One-dimensional Klein-Gordon equation with logarithmic nonlinearities, J. Phys. A 41 (2008), no. 35, 355201, 11 pp. https://doi.org/10.1088/1751-8113/41/35/355201
  4. I. Bia lynicki-Birula and J. Mycielski, Wave equations with logarithmic nonlinearities, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 23 (1975), no. 4, 461-466.
  5. I. Bia lynicki-Birula and J. Mycielski, Nonlinear wave mechanics, Ann. Physics 100 (1976), no. 1-2, 62-93. https://doi.org/10.1016/0003-4916(76)90057-9
  6. H. Buljan, A. Siber, M. Soljacic, T. Schwartz, M. Segev, and D. N. Christodoulides, Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media, Phys. Rev. E (3) 68 (2003), no. 3, 036607, 6 pp. https://doi.org/10.1103/PhysRevE.68.036607
  7. T. Cazenave, Stable solutions of the logarithmic Schrodinger equation, Nonlinear Anal. 7 (1983), no. 10, 1127-1140.
  8. T. Cazenave and A. Haraux, Equation de Schrodinger avec non-linearite logarithmique, C. R. Acad. Sci. Paris Ser. A-B 288 (1979), no. 4, A253-A256.
  9. H. Chen, P. Luo, and G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl. 422 (2015), no. 1, 84-98. https://doi.org/10.1016/j.jmaa.2014.08.030
  10. H. Chen and S. Tian, Initial boundary value problem for a class of semilinear pseudoparabolic equations with logarithmic nonlinearity, J. Dierential Equations 258 (2015), no. 12, 4424-4442. https://doi.org/10.1016/j.jde.2015.01.038
  11. K. Enqvist and J. McDonald, Q-balls and baryogenesis in the MSSM, Phys. Lett. B 425 (1998), 309-321.
  12. F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincare Anal. Non Lineaire 23 (2006), no. 2, 185-207. https://doi.org/10.1016/j.anihpc.2005.02.007
  13. S. Gerbi and B. Said-Houari, Local existence and exponential growth for a semilinear damped wave equation with dynamic boundary conditions, Adv. Differential Equations 13 (2008), no. 11-12, 1051-1074.
  14. S. Gerbi and B. Said-Houari, Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions, Nonlinear Anal. 74 (2011), no. 18, 7137-7150. https://doi.org/10.1016/j.na.2011.07.026
  15. S. Gerbi and B. Said-Houari, Exponential decay for solutions to semilinear damped wave equation, Discrete Contin. Dyn. Syst. Ser. S 5 (2012), no. 3, 559-566. https://doi.org/10.3934/dcdss.2012.5.559
  16. P. Gorka, Logarithmic quantum mechanics: existence of the ground state, Found. Phys. Lett. 19 (2006), no. 6, 591-601. https://doi.org/10.1007/s10702-006-1012-7
  17. P. Gorka, Convergence of logarithmic quantum mechanics to the linear one, Lett. Math. Phys. 81 (2007), no. 3, 253-264. https://doi.org/10.1007/s11005-007-0183-x
  18. P. Gorka, Logarithmic Klein-Gordon equation, Acta Phys. Polon. B 40 (2009), no. 1, 59-66.
  19. L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975), no. 4, 1061-1083. https://doi.org/10.2307/2373688
  20. X. Han, Global existence of weak solutions for a logarithmic wave equation arising from Q-ball dynamics, Bull. Korean Math. Soc. 50 (2013), no. 1, 275-283. https://doi.org/10.4134/BKMS.2013.50.1.275
  21. T. Hiramatsu, M. Kawasaki, and F. Takahashi, Numerical study of Q-ball formation in gravity mediation, J. Cosmol. Astropart. Phys. 2010 (2010), no. 6, 008. https://doi.org/10.1088/1475-7516/2010/06/008
  22. W. Krolikowski, D. Edmundson, and O. Bang, Unfiied model for partially coherent solitons in logarithmically nonlinear media, Phys. Rev. E 61 (2000), 3122-3126. https://doi.org/10.1103/PhysRevE.61.3122
  23. A. Linde, Strings, textures, inflation and spectrum bending, Phys. Lett. B 284 (1992), no. 3-4, 215-222. https://doi.org/10.1016/0370-2693(92)90423-2
  24. S. De Martino, M. Falanga, C. Godano, and G. Lauro, Logarithmic Schrodinger-like equation as a model for magma transport, Europhys. Lett. 63 (2003), no. 3, 472-475. https://doi.org/10.1209/epl/i2003-00547-6
  25. S. A. Messaoudi, Global existence and nonexistence in a system of Petrovsky, J. Math. Anal. Appl. 265 (2002), no. 2, 296-308. https://doi.org/10.1006/jmaa.2001.7697
  26. Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc. 95 (1960), 101-123. https://doi.org/10.2307/1993333
  27. L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math. 22 (1975), no. 3-4, 273-303. https://doi.org/10.1007/BF02761595
  28. D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal. 30 (1968), 148-172. https://doi.org/10.1007/BF00250942
  29. M. Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhauser Boston, Inc., Boston, MA, 1996. https://doi.org/10.1007/978-1-4612-4146-1