DOI QR코드

DOI QR Code

NODAL SOLUTIONS FOR AN ELLIPTIC EQUATION IN AN ANNULUS WITHOUT THE SIGNUM CONDITION

  • Chen, Tianlan (Department of Mathematics Northwest Normal University) ;
  • Lu, Yanqiong (Department of Mathematics Northwest Normal University) ;
  • Ma, Ruyun (Department of Mathematics Northwest Normal University)
  • Received : 2019.02.28
  • Accepted : 2019.07.08
  • Published : 2020.03.31

Abstract

This paper is concerned with the global behavior of components of radial nodal solutions of semilinear elliptic problems -Δv = λh(x, v) in Ω, v = 0 on ∂Ω, where Ω = {x ∈ RN : r1 < |x| < r2} with 0 < r1 < r2, N ≥ 2. The nonlinear term is continuous and satisfies h(x, 0) = h(x, s1(x)) = h(x, s2(x)) = 0 for suitable positive, concave function s1 and negative, convex function s2, as well as sh(x, s) > 0 for s ∈ ℝ \ {0, s1(x), s2(x)}. Moreover, we give the intervals for the parameter λ which ensure the existence and multiplicity of radial nodal solutions for the above problem. For this, we use global bifurcation techniques to prove our main results.

Acknowledgement

Supported by : NSFC

References

  1. A. Ambrosetti and P. Hess, Positive solutions of asymptotically linear elliptic eigenvalue problems, J. Math. Anal. Appl. 73 (1980), no. 2, 411-422. https://doi.org/10.1016/0022-247X(80)90287-5
  2. G. Dai, Bifurcation and one-sign solutions of the p-Laplacian involving a nonlinearity with zeros, Discrete Contin. Dyn. Syst. 36 (2016), no. 10, 5323-5345. https://doi.org/10.3934/dcds.2016034
  3. G. Dai and R. Ma, Unilateral global bifurcation phenomena and nodal solutions for p-Laplacian, J. Differential Equations 252 (2012), no. 3, 2448-2468. https://doi.org/10.1016/j.jde.2011.09.026
  4. G. Dai, R. Ma, and Y. Lu, Bifurcation from infinity and nodal solutions of quasilinear problems without the signum condition, J. Math. Anal. Appl. 397 (2013), no. 1, 119-123. https://doi.org/10.1016/j.jmaa.2012.07.056
  5. E. N. Dancer, On the structure of solutions of non-linear eigenvalue problems, Indiana Univ. Math. J. 23 (1973/74), 1069-1076. https://doi.org/10.1512/iumj.1974. 23.23087
  6. D. G. de Figueiredo and J.-P. Gossez, Strict monotonicity of eigenvalues and unique continuation, Comm. Partial Differential Equations 17 (1992), no. 1-2, 339-346. https://doi.org/10.1080/03605309208820844
  7. D. D. Hai, Positive solutions for semilinear elliptic equations in annular domains, Non-linear Anal. 37 (1999), no. 8, Ser. A: Theory Methods, 1051-1058. https://doi.org/10.1016/S0362-546X(98)00029-7
  8. L. Iturriaga, E. Massa, J. Sanchez, and P. Ubilla, Positive solutions for an elliptic equation in an annulus with a superlinear nonlinearity with zeros, Math. Nachr. 287 (2014), no. 10, 1131-1141. https://doi.org/10.1002/mana.201100285
  9. P.-L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), no. 4, 441-467. https://doi.org/10.1137/1024101
  10. R. Ma, Global behavior of the components of nodal solutions of asymptotically linear eigenvalue problems, Appl. Math. Lett. 21 (2008), no. 7, 754-760. https://doi.org/10.1016/j.aml.2007.07.029
  11. R. Ma and Y. An, Global structure of positive solutions for nonlocal boundary value problems involving integral conditions, Nonlinear Anal. 71 (2009), no. 10, 4364-4376. https://doi.org/10.1016/j.na.2009.02.113
  12. R. Ma and Y. An, Global structure of positive solutions for superlinear second order m-point boundary value problems, Topol. Methods Nonlinear Anal. 34 (2009), no. 2, 279-290. https://doi.org/10.12775/TMNA.2009.043
  13. R. Ma, T. Chen, and Y. Lu, On the Bonheure-Noris-Weth conjecture in the case of linearly bounded nonlinearities, Discrete Contin. Dyn. Syst. Ser. B 21 (2016), no. 8, 2649-2662. https://doi.org/10.3934/dcdsb.2016066
  14. R. Ma and B. Thompson, Nodal solutions for nonlinear eigenvalue problems, Nonlinear Anal. 59 (2004), no. 5, 707-718. https://doi.org/10.1016/j.na.2004.07.030
  15. R. Ma and B. Thompson, Multiplicity results for second-order two-point boundary value problems with superlinear or sublinear nonlinearities, J. Math. Anal. Appl. 303 (2005), no. 2, 726-735. https://doi.org/10.1016/j.jmaa.2004.09.002
  16. M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations, corrected reprint of the 1967 original, Springer-Verlag, New York, 1984. https://doi.org/10.1007/978-1-4612-5282-5
  17. P. H. Rabinowitz, On bifurcation from infinity, J. Differential Equations 14 (1973), 462-475. https://doi.org/10.1016/0022-0396(73)90061-2
  18. H. Wang, On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Differential Equations 109 (1994), no. 1, 1-7. https://doi.org/10.1006/jdeq.1994.1042
  19. G. T. Whyburn, Topological Analysis, Princeton Mathematical Series. No. 23, Princeton University Press, Princeton, NJ, 1958.