DOI QR코드

DOI QR Code

ON FOUR NEW MOCK THETA FUNCTIONS

  • Hu, QiuXia (Department of Mathematics Shanghai Normal University)
  • Received : 2019.03.03
  • Accepted : 2019.08.05
  • Published : 2020.03.31

Abstract

In this paper, we first give some representations for four new mock theta functions defined by Andrews [1] and Bringmann, Hikami and Lovejoy [5] using divisor sums. Then, some transformation and summation formulae for these functions and corresponding bilateral series are derived as special cases of 2𝜓2 series $${\sum\limits_{n=-{{\infty}}}^{{\infty}}}{\frac{(a,c;q)_n}{(b,d;q)_n}}z^n$$ and Ramanujan's sum $${\sum\limits_{n=-{{\infty}}}^{{\infty}}}{\frac{(a;q)_n}{(b;q)_n}}z^n$$.

References

  1. G. E. Andrews, q-orthogonal polynomials, Rogers-Ramanujan identities, and mock theta functions, Proc. Steklov Inst. Math. 276 (2012), no. 1, 21-32; translated from Tr. Mat. Inst. Steklova 276 (2012), Teoriya Chisel, Algebra i Analiz, 27-38. https://doi.org/10.1134/S0081543812010038
  2. G. E. Andrews and D. Hickerson, Ramanujan's "lost" notebook. VII. The sixth order mock theta functions, Adv. Math. 89 (1991), no. 1, 60-105.
  3. N. Bagis, Properties of Lerch sums and Ramanujan's mock theta functions, arXiv:1808. 07970v3 [math.GM] 24 Sep 2018.
  4. W. N. Bailey, On the basic bilateral hypergeometric series $_2{\Psi}_2$, Quart. J. Math., Oxford Ser. (2) 1 (1950), 194-198. https://doi.org/10.1093/qmath/1.1.194
  5. K. Bringmann, K. Hikami, and J. Lovejoy, On the modularity of the unified WRT invariants of certain Seifert manifolds, Adv. in Appl. Math. 46 (2011), no. 1-4, 86-93. https://doi.org/10.1016/j.aam.2009.12.004
  6. Y.-S. Choi, Tenth order mock theta functions in Ramanujan's lost notebook, Invent. Math. 136 (1999), no. 3, 497-569.
  7. G. Gasper and M. Rahman, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 35, Cambridge University Press, Cambridge, 1990.
  8. B. Gordon and R. J. McIntosh, Some eighth order mock theta functions, J. London Math. Soc. (2) 62 (2000), no. 2, 321-335. https://doi.org/10.1112/S0024610700008735
  9. K. Hikami, Transformation formula of the "second" order Mock theta function, Lett. Math. Phys. 75 (2006), no. 1, 93-98.
  10. J. Mc Laughlin, Mock theta function identities deriving from bilateral basic hypergeo- metric series, in Analytic number theory, modular forms and q-hypergeometric series, 503-531, Springer Proc. Math. Stat., 221, Springer, Cham, 2017.
  11. E. Mortenson, On three third order mock theta functions and Hecke-type double sums, Ramanujan J. 30 (2013), no. 2, 279-308. https://doi.org/10.1007/s11139-012-9376-8
  12. S. Ramanujan, Collected Paper, Cambridge University Press 1927, reprinted by Chelsea New York, (1962).
  13. G. N. Watson, The Mock Theta Functions (2), Proc. London Math. Soc. (2) 42 (1936), no. 4, 274-304. https://doi.org/10.1112/plms/s2-42.1.274