Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 57 Issue 2
- /
- Pages.407-417
- /
- 2020
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
DOI QR Code
ON THE FIRST GENERALIZED HILBERT COEFFICIENT AND DEPTH OF ASSOCIATED GRADED RINGS
- Mafi, Amir (Department of Mathematics University Of Kurdistan) ;
- Naderi, Dler (Department of Mathematics University Of Kurdistan)
- Received : 2019.03.15
- Accepted : 2019.09.19
- Published : 2020.03.31
Abstract
Let (R, m) be a d-dimensional Cohen-Macaulay local ring with infinite residue field. Let I be an ideal of R that has analytic spread ℓ(I) = d, satisfies the Gd condition, the weak Artin-Nagata property AN-d-2 and m is not an associated prime of R/I. In this paper, we show that if j1(I) = λ(I/J) + λ[R/(Jd-1 :RI+(Jd-2 :RI+I):R m∞)] + 1, then I has almost minimal j-multiplicity, G(I) is Cohen-Macaulay and rJ(I) is at most 2, where J = (x1, …, xd) is a general minimal reduction of I and Ji = (x1, …, xi). In addition, the last theorem is in the spirit of a result of Sally who has studied the depth of associated graded rings and minimal reductions for m-primary ideals.
File
References
- R. Achilles and M. Manaresi, Multiplicity for ideals of maximal analytic spread and intersection theory, J. Math. Kyoto Univ. 33 (1993), no. 4, 1029-1046. https://doi.org/10.1215/kjm/1250519127
- R. Achilles and M. Manaresi, Multiplicities of a bigraded ring and intersection theory, Math. Ann. 309 (1997), no. 4, 573-591. https://doi.org/10.1007/s002080050128
-
C. Ciuperca, A numerical characterization of the
$S_2$ -ification of a Rees algebra, J. Pure Appl. Algebra 178 (2003), no. 1, 25-48. https://doi.org/10.1016/S0022-4049(02) 00157-3 - H. Flenner, L. O'Carroll, and W. Vogel, Joins and intersections, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999. https://doi.org/10.1007/978-3-662-03817-8
- D. R. Grayson and M. E. Stillman, Macaulay 2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2.
- S. Huckaba, A d-dimensional extension of a lemma of Huneke's and formulas for the Hilbert coefficients, Proc. Amer. Math. Soc. 124 (1996), no. 5, 1393-1401. https://doi.org/10.1090/S0002-9939-96-03182-6
- S. Huckaba and T. Marley, Hilbert coecients and the depths of associated graded rings, J. London Math. Soc. (2) 56 (1997), no. 1, 64-76. https://doi.org/10.1112/S0024610797005206
- C. Huneke, Hilbert functions and symbolic powers, Michigan Math. J. 34 (1987), no. 2, 293-318. https://doi.org/10.1307/mmj/1029003560
- C. Huneke and I. Swanson, Integral Closure of Ideals, Rings, and Modules, London Mathematical Society Lecture Note Series, 336, Cambridge University Press, Cambridge, 2006.
- P. Mantero and Y. Xie, Generalized stretched ideals and Sally's conjecture, J. Pure Appl. Algebra 220 (2016), no. 3, 1157-1177. https://doi.org/10.1016/j.jpaa.2015.08.013
- D. G. Northcott, A note on the coefficients of the abstract Hilbert function, J. London Math. Soc. 35 (1960), 209-214. https://doi.org/10.1112/jlms/s1-35.2.209
- D. G. Northcott and D. Rees, Reductions of ideals in local rings, Proc. Cambridge Philos. Soc. 50 (1954), 145-158. https://doi.org/10.1017/s0305004100029194
-
A. Ooishi,
${\Delta}$ -genera and sectional genera of commutative rings, Hiroshima Math. J. 17 (1987), no. 2, 361-372. http://projecteuclid.org/euclid.hmj/1206130073 - C. Polini and Y. Xie, j-multiplicity and depth of associated graded modules, J. Algebra 379 (2013), 31-49. https://doi.org/10.1016/j.jalgebra.2013.01.001
- C. Polini and Y. Xie, Generalized Hilbert functions, Comm. Algebra 42 (2014), no. 6, 2411-2427. https://doi.org/10.1080/00927872.2012.756884
- J. D. Sally, Hilbert coefficients and reduction number 2, J. Algebraic Geom. 1 (1992), no. 2, 325-333.
- N. V. Trung, Constructive characterization of the reduction numbers, Compositio Math. 137 (2003), no. 1, 99-113.
- B. Ulrich, Artin-Nagata properties and reductions of ideals, in Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), 373-400, Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994. https://doi.org/10.1090/conm/159/01519
- Y. Xie, Generalized Hilbert coefficients and Northcott's inequality, J. Algebra 461 (2016), 177-200. https://doi.org/10.1016/j.jalgebra.2016.05.009