• Received : 2019.03.25
  • Accepted : 2019.11.19
  • Published : 2020.03.31


In the last two decades, codes over noncommutative rings have been one of the main trends in coding theory. Due to the fact that noncommutativity brings many challenging problems in its nature, still there are many open problems to be addressed. In 2015, generator polynomial matrices and parity-check polynomial matrices of generalized quasi-cyclic (GQC) codes were investigated by Matsui. We extended these results to the noncommutative case. Exploring the dual structures of skew constacyclic codes, we present a direct way of obtaining parity-check polynomials of skew multi-twisted codes in terms of their generators. Further, we lay out the algebraic structures of skew multipolycyclic codes and their duals and we give some examples to illustrate the theorems.


  1. T. Abualrub, A. Ghrayeb, N. Aydin, and I. Siap, On the construction of skew quasicyclic codes, IEEE Trans. Inform. Theory 56 (2010), no. 5, 2081-2090.
  2. A. Alahamdi, S. Dougherty, A. Leroy, and P. Sole, On the duality and the direction of polycyclic codes, Adv. Math. Commun. 10 (2016), no. 4, 921-929.
  3. N. Aydin and A. Halilovic, A generalization of quasi-twisted codes: multi-twisted codes, Finite Fields Appl. 45 (2017), 96-106.
  4. N. Aydin, I. Siap, and D. Ray-Chaudhuri, The structure of 1-generator quasi-twisted codes and new linear codes, Des. Codes Cryptogr., 23 (2001), no. 3, 313-326.
  5. S. Bedir and I. Siap, Polycyclic codes over finite chain rings, International Conference on Coding and Cryptography, Algeria, 2015.
  6. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265. jsco.1996.0125
  7. D. Boucher, W. Geiselmann, and F. Ulmer, Skew-cyclic codes, Appl. Algebra Engrg. Comm. Comput. 18 (2007), no. 4, 379-389.
  8. D. Boucher, P. Sole, and F. Ulmer, Skew constacyclic codes over Galois rings, Adv. Math. Commun. 2 (2008), no. 3, 273-292.
  9. D. Boucher and F. Ulmer, Coding with skew polynomial rings, J. Symbolic Comput. 44 (2009), no. 12, 1644-1656.
  10. D. Boucher and F. Ulmer, A note on the dual codes of module skew codes, in Cryptography and coding, 230-243, Lecture Notes in Comput. Sci., 7089, Springer, Heidelberg, 2011.
  11. J. Conan and G. Seguin, Structural properties and enumeration of quasi-cyclic codes, Appl. Algebra Engrg. Comm. Comput. 4 (1993), no. 1, 25-39.
  12. N. Fogarty and H. Gluesing-Luerssen, A circulant approach to skew-constacyclic codes, Finite Fields Appl. 35 (2015), 92-114.
  13. J. Gao, L. Shen, and F.-W. Fu, A Chinese remainder theorem approach to skew generalized quasi-cyclic codes over finite fields, Cryptogr. Commun. 8 (2016), no. 1, 51-66.
  14. M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, available at
  15. P. P. Greenough and R. Hill, Optimal ternary quasi-cyclic codes, Des. Codes Cryptogr. 2 (1992), no. 1, 81-91.
  16. T. A. Gulliver and V. K. Bhargava, Nine good rate (m - 1)=pm quasi-cyclic codes, IEEE Trans. Inform. Theory 38 (1992), no. 4, 1366-1369.
  17. T. A. Gulliver and V. K. Bhargava, Some best rate 1/p and rate (p-1)/p systematic quasi-cyclic codes over GF(3) and GF(4), IEEE Trans. Inform. Theory 38 (1992), no. 4, 1369-1374.
  18. C. Guneri, F. Ozbudak, B. Ozkaya, E. Sacikara, Z. Sepasdar, and P. Sole, Structure and performance of generalized quasi-cyclic codes, Finite Fields Appl. 47 (2017), 183-202.
  19. N. Jacobson, Finite-Dimensional Division Algebras over Fields, Springer-Verlag, Berlin, 1996.
  20. S. Jitman, S. Ling, and P. Udomkavanich, Skew constacyclic codes over finite chain rings, Adv. Math. Commun. 6 (2012), no. 1, 39-63.
  21. T. Koshy, Polynomial approach to quasi-cyclic codes, Bull. Calcutta Math. Soc. 69 (1977), no. 2, 51-59.
  22. K. Lally and P. Fitzpatrick, Algebraic structure of quasi-cyclic codes, Discrete Appl. Math. 111 (2001), no. 1-2, 157-175.
  23. S. Ling and P. Sole, On the algebraic structure of quasi-cyclic codes. I. Finite fields, IEEE Trans. Inform. Theory 47 (2001), no. 7, 2751-2760.
  24. S. R. Lopez-Permouth, B. R. Parra-Avila, and S. Szabo, Dual generalizations of the concept of cyclicity of codes, Adv. Math. Commun. 3 (2009), no. 3, 227-234.
  25. H. Matsui, On generator and parity-check polynomial matrices of generalized quasi-cyclic codes, Finite Fields Appl. 34 (2015), 280-304.
  26. M. Matsuoka, ${\theta}$-polycyclic codes and ${\theta}$-sequential codes over finite fields, Int. J. Algebra 5 (2011), no. 1-4, 65-70.
  27. B. R. McDonald, Finite Rings with Identity, Marcel Dekker, Inc., New York, 1974.
  28. O. Ore, Theory of non-commutative polynomials, Ann. of Math. (2) 34 (1933), no. 3, 480-508.
  29. W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes, second edition, The M.I.T. Press, Cambridge, MA, 1972.
  30. A. Sharma, V. Chauhan, and H. Singh, Multi-twisted codes over finite fields and their dual codes, Finite Fields Appl. 51 (2018), 270-297.
  31. I. Siap, T. Abualrub, N. Aydin, and P. Seneviratne, Skew cyclic codes of arbitrary length, Int. J. Inf. Coding Theory 2 (2011), no. 1, 10-20.
  32. I. Siap, N. Aydin, and D. K. Ray-Chaudhuri, New ternary quasi-cyclic codes with better minimum distances, IEEE Trans. Inform. Theory 46 (2000), no. 4, 1554-1558.
  33. I. Siap and N. Kulhan, The structure of generalized quasi cyclic codes, Appl. Math. E-Notes 5 (2005), 24-30.
  34. V. T. Van, H. Matsui, and S. Mita, Computation of Grobner basis for systematic encoding of generalized quasi-cyclic codes, IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences E92-A (2009), no.9, 2345-2359.
  35. E. J. Weldon, Jr., Long quasi-cyclic codes are good, IEEE Trans. Inform. Theory, IT-16 (1970), pp. 130.