Bulletin of the Korean Mathematical Society (대한수학회보)
- Volume 57 Issue 2
- /
- Pages.521-533
- /
- 2020
- /
- 1015-8634(pISSN)
- /
- 2234-3016(eISSN)
DOI QR Code
ON THE BERGMAN KERNEL FOR SOME HARTOGS DOMAINS
- Park, Jong-Do (Department of Mathematics and Research Institute for Basic Sciences Kyung Hee University)
- Received : 2019.04.10
- Accepted : 2019.08.05
- Published : 2020.03.31
Abstract
In this paper, we compute the Bergman kernel for Ωp,q,r = {(z, z', w) ∈ ℂ2 × Δ : |z|2p < (1 - |z'|2q)(1 - |w|2)r}, where p, q, r > 0 in terms of multivariable hypergeometric series. As a consequence, we obtain the behavior of KΩp,q,r (z, 0, 0; z, 0, 0) when (z, 0, 0) approaches to the boundary of Ωp,q,r.
File
Acknowledgement
Supported by : National Research Foundation of Korea
References
- H. Ahn and J.-D. Park, The explicit forms and zeros of the Bergman kernel function for Hartogs type domains, J. Funct. Anal. 262 (2012), no. 8, 3518-3547. https://doi.org/10.1016/j.jfa.2012.01.021
- H. P. Boas, S. Fu, and E. J. Straube, The Bergman kernel function: explicit formulas and zeroes, Proc. Amer. Math. Soc. 127 (1999), no. 3, 805-811. https://doi.org/10.1090/S0002-9939-99-04570-0
- J. P. D'Angelo, A note on the Bergman kernel, Duke Math. J. 45 (1978), no. 2, 259-265. http://projecteuclid.org/euclid.dmj/1077312818
- J. P. D'Angelo, An explicit computation of the Bergman kernel function, J. Geom. Anal. 4 (1994), no. 1, 23-34. https://doi.org/10.1007/BF02921591
- G. Francsics and N. Hanges, The Bergman kernel of complex ovals and multivariable hypergeometric functions, J. Funct. Anal. 142 (1996), no. 2, 494-510. https://doi.org/10.1006/jfan.1996.0157
- G. Francsics and N. Hanges, Asymptotic behavior of the Bergman kernel and hypergeometric functions, in Multidimensional complex analysis and partial dierential equations (Sao Carlos, 1995), 79-92, Contemp. Math., 205, Amer. Math. Soc., Providence, RI, 1997. https://doi.org/10.1090/conm/205/02656
- S. G. Gindikin, Analysis in homogeneous domains, Uspehi Mat. Nauk 19 (1964), no. 4 (118), 3-92.
- S. Gong and X. A. Zheng, The Bergman kernel function of some Reinhardt domains, Trans. Amer. Math. Soc. 348 (1996), no. 5, 1771-1803. https://doi.org/10.1090/S0002-9947-96-01526-7
- L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classi- cal Domains, Translated from the Russian by Leo Ebner and Adam Koranyi, American Mathematical Society, Providence, RI, 1963.
- Z. Huo, The Bergman kernel on some Hartogs domains, J. Geom. Anal. 27 (2017), no. 1, 271-299. https://doi.org/10.1007/s12220-016-9681-3
- H. Ishi, J.-D. Park, and A. Yamamori, Bergman kernel function for Hartogs domains over bounded homogeneous domains, J. Geom. Anal. 27 (2017), no. 2, 1703-1736. https://doi.org/10.1007/s12220-016-9737-4
-
J.-D. Park, New formulas of the Bergman kernels for complex ellipsoids in
$C^2$ , Proc. Amer. Math. Soc. 136 (2008), no. 12, 4211-4221. https://doi.org/10.1090/S0002- 9939-08-09576-2 - J.-D. Park, Explicit formulas of the Bergman kernel for 3-dimensional complex ellipsoids, J. Math. Anal. Appl. 400 (2013), no. 2, 664-674. https://doi.org/10.1016/j.jmaa.2012.11.017
- J.-D. Park, The zeros of the Bergman kernel for some Reinhardt domains, J. Funct. Spaces 2016 (2016), Art. ID 3856096, 9 pp. https://doi.org/10.1155/2016/3856096
- W. P. Yin, Two problems on Cartan domains, J. China Univ. Sci. Tech. 16 (1986), no. 2, 130-146.
- W. P. Yin, The Bergman kernels on Cartan-Hartogs domains, Chinese Sci. Bull. 44 (1999), no. 21, 1947-1951. https://doi.org/10.1007/BF02887114
- E. H. Youssfi, Proper holomorphic liftings and new formulas for the Bergman and Szego kernels, Studia Math. 152 (2002), no. 2, 161-186.
- L. Zhang and W. Yin, Lu Qi-Keng's problem on some complex ellipsoids, J. Math. Anal. Appl. 357 (2009), no. 2, 364-370. https://doi.org/10.1016/j.jmaa.2009.04.018