DOI QR코드

DOI QR Code

Effect of Particulate Matter and Ash Amount on Pressure Drop and Flow Uniformity of Diesel Particulate Filter Reduction System

입자상물질과 Ash양이 디젤매연여과장치 내의 배압 및 유동균일도에 미치는 영향

  • Kim, YunJi (Department of Environment-Energy Engineering, The University of Suwon) ;
  • Han, DanBee (Department of Environment-Energy Engineering, The University of Suwon) ;
  • Seo, TaeWon (Department of Environment-Energy Engineering, The University of Suwon) ;
  • Oh, KwangChul (Korea automotive technology institute) ;
  • Baek, YoungSoon (Department of Environment-Energy Engineering, The University of Suwon)
  • 김윤지 (수원대학교 환경에너지공학과) ;
  • 한단비 (수원대학교 환경에너지공학과) ;
  • 서태원 (수원대학교 환경에너지공학과) ;
  • 오광철 (한국자동차연구원) ;
  • 백영순 (수원대학교 환경에너지공학과)
  • Received : 2019.12.05
  • Accepted : 2019.12.20
  • Published : 2020.03.31

Abstract

Recently, as the fine dust is increased and the emission regulations of diesel engines have been tightened, interest in diesel soot filtration devices has rapidly increased. There is specifically a demand for the technological development of higher diesel exhaust gas after-treatment device efficiency. As part of this, many studies were conducted to increase exhaust gas treatment efficiency by improving the flow uniformity of the exhaust gas in the diesel particulate filter (DPF) and reducing the pressure drop between the inlet and the outlet of DPF. In this study, the effects of pressure drop by the flow rate and temperature of exhaust gas, DPF I/O ratio, Ash, and PM amount in diesel reduction device were simulated via a 12" diameter DPF and diesel oxidation catalyst (DOC) using ANSYS Fluent. As the flow rate and temperature decreased, the pressure drop decreased, whereas the PM amount affected the pressure drop more than the ash amount and the pressure drop was lower in anisotropic DPF than isotropic DPF. In the case of DPF flow uniformity, it was constant regardless of the various variables of DPF. In ESC and ETC conditions, the filtration efficiency for PM was similar regardless of anisotropic and isotropic DPF, but the filtration efficiency for PN (particle number) was higher in anisotropic DPF than isotropic DPF.

최근 미세먼지 증가로 인하여 디젤엔진의 배출 규제가 강화됨에 따라 디젤 매연여과장치에 관심이 급증하게 되었으며, 특히 디젤 배기가스 후처리 장치의 고효율화에 대한 기술개발이 더욱 요구되고 있다. 이에 대한 일환으로서 디젤매연여과장치(diesel particulate filter, DPF) 내 배기가스의 유동 균일도를 향상시키고 배압을 낮추어서 배기가스처리 효율을 높이는 연구가 많이 되고 있다. 본 연구에서는 ANSYS Fluent를 이용하여 직경 12"의 DPF와 디젤산화촉매(diesel oxidation catalyst, DOC)를 장착한 디젤 매연여과장치에서의 배기가스의 유속과 온도, DPF IO ratio, Ash와 PM양에 따른 배압에 미치는 영향을 시뮬레이션 하여 배압을 낮추는 최적화 연구를 하였다. 결과로서 배기가스의 온도와 유속이 낮을수록 배압이 낮아졌으며, PM양이 Ash양보다 배압에 더 큰 영향을 주는 것으로 나타냈다. 또한 비대칭 DPF가 대칭 DPF에 비해 배압이 더 낮게 나타냈으나, 유동 균일도의 경우는 다양한 변수에 관계없이 일정하게 나타냈다. european stationary cycle (ESC), european transient cycle (ETC) 조건에서 PM의 정화효율은 비대칭, 대칭 DPF 관계없이 유사하나, particle number (PN)의 정화효율에서는 비대칭 DPF가 대칭 DPF에 비해 높게 나타냈다.

Keywords

Acknowledgement

본 연구는 글로벌 탑 환경기술개발사업 중 친환경차 보급 확산 기술개발(E618-00208-0603-2)에서 지원받아 수행됐습니다.

References

  1. Choi, B., and Cho, J., "Study on the Improvement of Uniformity of Inlet Velocity in Exhaust After-treatment System for System for Heavy Duty Engine," KSAE, 280-284 (2002).
  2. Jeong, S., Lee, W., Lee, G., Kim, K., Bae, S., and Kim, H., "A Study on Flow Characteristics in Diesel Particle Filter for Heavy-duty Diesel Engine," KSAE, 280-284 (2006).
  3. Givens, W. R., and Lemme, C. D., "Flow through Catalytic Converters An Analytical and Experimental Treatment," SAE, 740247 (1974).
  4. Johnson, W. C., and Chang, J. C., "Analytical Investigation of the Performance of Catalytic Monoliths of Varying Channel Geometries Based on Mass Controlling Conditional," SAE, 740196 (1974).
  5. Bissett, E. J., "Mathematical model of the thermal regeneration of a wall-flow monolith diesel Particulate filter," Chem. Eng. Sci., 39(7-8), 1233-1244 (1984). https://doi.org/10.1016/0009-2509(84)85084-8
  6. Lai, M. C., and Kim, J. Y., "Three-dimensional Simulations of Automotive Catalytic Converter Internal Flow," SAE, 9100200 (1991).
  7. Baxendale, A. J., "Computational Fluid Dynamics in Exhaust System Design and Development," 94 Interanional EG Design, Sterling Publication, Ltd., 126-130 (1994).
  8. Weltens, H., Bressler, H., Terres, F., Neumaier, H., and Rammoser, D., "Optimization of Catalytic Converter Gas Flow Distribution by CFD Prediction," SAE, 9300780 (1993).
  9. Konstandopoulos, A. G., Skaperdas, E., Warren, J., Allansson, R., "Optimizes filter design and selection criteria for continuously regenerating diesel Particulate traps," SAE, 1999-01-0468 (1999).
  10. Haralampous, O. A., Kandylas, I. P., Koltsakis, G. C., and Samaras, Z. C., "Diesel Particulate filter pressure drop Part 1: modeling and experimental validation," Int. J. Engine Res., 5(2), 149-162 (2004). https://doi.org/10.1243/146808704773564550
  11. Ogyu, K., Ohno, K., Hong, S., and Komori, T., "Ash Storage Capacity Enhancement of Diesel Particulate Filter," SAE, 2004-01-0949 (2004).
  12. Wurzenberger, J. C., and Kutschi, S., "Advanced simulation technologies for diesel Particulate filters, a fundamental study on asymmetric channel geometries," SAE, 2007-01-1137 (2007).
  13. Paul Day, J., and Socha, L. S., "The design of Automotive Catalyst Supports for Improved Pressure Drop and Conversion Efficiency," SAE, 1991-02-01 (1991).
  14. Ahn, J. Y., Ku, J. H., Park, J. K., and Kim, J. W., "A Study on the Pressure Drop and Flow Characteristics depending upon the inlet-outlet Ceometry of Catalytic Converter," KSAE, 81-86 (2007).

Cited by

  1. 13" 비대칭 DPF 내 형상에 따른 배압 및 유동균일도 영향에 관한 전산해석연구 vol.31, pp.6, 2020, https://doi.org/10.7316/khnes.2020.31.6.614