DOI QR코드

DOI QR Code

Assessment and Validation of New Global Grid-based CHIRPS Satellite Rainfall Products Over Korea

전지구 격자형 CHIRPS 위성 강우자료의 한반도 적용성 분석

  • Jeon, Min-Gi (Department of Convergence of Information and Communication Engineering, Hankyong National University) ;
  • Nam, Won-Ho (Department of Bioresources and Rural Systems Engineering, Institute of Agricultural Environmental Science, National Agricultural Water Research Center, Hankyong National University) ;
  • Mun, Young-Sik (Department of Bioresources and Rural Systems Engineering, Hankyong National University) ;
  • Kim, Han-Joong (Department of Bioresources and Rural Systems Engineering, Institute of Agricultural Environmental Science, Hankyong National University)
  • Received : 2019.05.21
  • Accepted : 2020.02.25
  • Published : 2020.03.31

Abstract

A high quality, long-term, high-resolution precipitation dataset is an essential in climate analyses and global water cycles. Rainfall data from station observations are inadequate over many parts of the world, especially North Korea, due to non-existent observation networks, or limited reporting of gauge observations. As a result, satellite-based rainfall estimates have been used as an alternative as a supplement to station observations. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite-based rainfall products with relatively high spatial and temporal resolutions and global coverage. CHIRPS is a global precipitation product and is made available at daily to seasonal time scales with a spatial resolution of 0.05° and a 1981 to near real-time period of record. In this study, we analyze the applicability of CHIRPS data on the Korean Peninsula by supplementing the lack of precipitation data of North Korea. We compared the daily precipitation estimates from CHIRPS with 81 rain gauges across Korea using several statistical metrics in the long-term period of 1981-2017. To summarize the results, the CHIRPS product for the Korean Peninsula was shown an acceptable performance when it is used for hydrological applications based on monthly rainfall amounts. Overall, this study concludes that CHIRPS can be a valuable complement to gauge precipitation data for estimating precipitation and climate, hydrological application, for example, drought monitoring in this region.

Acknowledgement

Supported by : 행정안전부

References

  1. Adler, R. F., G. J. Huffman, and P. R. Keehn, 1994. Global tropical rain estimates from microwave-adjusted geosynchoronous IR data. Remote Sensing Reviews 11(1-4):125-152. doi:10.1080/02757259409532262. https://doi.org/10.1080/02757259409532262
  2. Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P. P. Xie, J. Janowiak, B. Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Sussskind, P. Arkin, and E. Nelkin, 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). Journal of Hydrometeorology 4(6): 1147-1167. doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2. https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
  3. AghaKouchak, A., A. Behrangi, S. Sorooshian, K. Hsu, and E. Amitai, 2011. Evaluation of satellite-retrieved extreme precipitation rates across the central United States. Journal of Geophysical Research 116(D02115). doi:10.1029/2010JD014741.
  4. Arkin, P., and P. Ardanuy, 1989. Estimating climatic-scale precipitation from space: A review. Journal of Climate 2(11): 1229-1238. doi:10.1002/wrcr.20307. https://doi.org/10.1175/1520-0442(1989)002<1229:ECSPFS>2.0.CO;2
  5. Baik, J., J. Park, K. Kim, and M. Choi, 2018. Assessment and merging technique for GPM satellite precipitation product using ground based measurement. Journal of Korea Water Resources Association 51(2): 131-140. doi:10.3741/JKWRA.2018.51.2.131. https://doi.org/10.3741/JKWRA.2018.51.2.131
  6. Cho, H., S. Hawng, Y. Cho, and M. Choi, 2013. Analysis of spatial precipitation field using downscaling on the Korean peninsula. Journal of Korea Water Resources Association 46(11): 1129-1140. doi:10.3741/JKWRA.2013.46.11.1129. https://doi.org/10.3741/JKWRA.2013.46.11.1129
  7. Cho, J., C. G. Kim, S. Hwang, J. Shin, and J. Park, 2019. Hydrologic evaluation of grid-based global climate data for use in ungauged watershed. Journal of Climate Change Research 10(1): 23-34. doi:10.15531/KSCCR.2019.10.1.23. https://doi.org/10.15531/KSCCR.2019.10.1.23
  8. Dinku, T., C. Funk, P. Peterson, R. Maidment, T. Tadesse, H. Gadain, and P. Ceccato, 2018. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Quarterly Journal of the Royal Meteorological Society 144(Suppl.1):292-312. doi:10.1002/qj.3244. https://doi.org/10.1002/qj.3244
  9. Duan, Z., J. Liu, Y. Tuo, G. Chiogna, and M. Disse, 2016. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Science of the Total Environment 573: 1536-1553. doi:10.1016/j.scitotenv.2016.08.213. https://doi.org/10.1016/j.scitotenv.2016.08.213
  10. Faiz, M. A., D. Liu, Q. Fu, M. U. Qamar, M. I. Khan, F. Baig, T. Li, and S. Cui, 2017. Stream flow variability and drought severity in the Songhua River Basin, Northeast China. Stochastic Environmental Research and Risk Assessment 32(5): 1225-1242. doi:10.1007/s00477-017-1463-3. https://doi.org/10.1007/s00477-017-1463-3
  11. Faiz, M. A., D. Liu, F. Qiang, D. Wrzesiński, F. Baig, G. Nabi, M. I. Khan, T. Li, and S. Cui, 2018a. Extreme precipitation and drought monitoring in northeastern China using general circulation models and pan evaporation-based drought indices. Climate Research 74(3): 231-250. doi:10.3354/cr01503. https://doi.org/10.3354/cr01503
  12. Faiz, M. A., D. Liu, Q. Fu, S. Qiaohong, M. Li, F. Baig, T. Li, and S. Cui, 2018b. How accurate are the performances of gridded precipitation data products over Northeast China? Atmospheric Research 211: 12-20. doi:10.1016/j.atmosres.2018.05.006. https://doi.org/10.1016/j.atmosres.2018.05.006
  13. Funk, C., and J. Verdin, 2010. Real-time decision support systems: The famine early warning system network. In: Gebremichael M., Hossain F. (eds) Satellite Rainfall Applications for Surface Hydrology. Springer, Dordrecht: 295-320. doi:10.1007/978-90-481-2915-7_17.
  14. Funk, C., G. J. Husak, J. Michaelsen, S. Shukla, A. Hoell, B. Lyon, M. P. Hoerling, B. Liebmeann, T. Zhang, J. Verdin, G. Galu, G. Eilerts, and J. Rowland, 2013. Attribution of 2012 and 2003-12 rainfall deficits in eastern Kenya and southern Somalia. Bulletin of the American Meteorological Society 94(9): S45-S48. doi:10.1175/BAMS-D-13-00085.1.
  15. Funk, C. C., P. J. Peterson, M. F. Landsfeld, D. H. Pedreros, J. P. Verdin, J. D. Rowland, B. E. Romero, G. J. Husak, J. C. Michaelsen, and A. P. Verdin, 2014. A quasi-global precipitation time series for drought monitoring. U.S. Geological Survey Data Series 832. doi:10.3133/ds832.
  16. Funk, C., P. Peterson, M. Landsfeld, D. Pedreros, J. Verdin, S. Shukla, G. Husak, J. Rowland, L. Harrison, A. Hoell, and J. Michaelsen, 2015a. The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Scientific Data 2: 150066. doi:10.1038/sdata.2015.66. https://doi.org/10.1038/sdata.2015.66
  17. Funk, C., A. Verdin, J. Michaelsen, P. Peterson, D. Pedreros, and G. Husak, 2015b. A global satellite-assisted precipitation climatology. Earth System Science Data 7: 275-287. doi:10.5194/essd-7-275-2015. https://doi.org/10.5194/essd-7-275-2015
  18. Gorenburg, I. P., D. McLaughlin, and D. Entekhabi, 2001. Scale-recursive assimilation of precipitation data. Advances in Water Resources 24(9-10): 941-953. doi:10.1016/S0309-1708(01)00033-1. https://doi.org/10.1016/S0309-1708(01)00033-1
  19. Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin, S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001. Global precipitation at one-degree daily resolution from multi satellite observations. Journal of Hydrometeorology 2(1): 36-50. doi:10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2. https://doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
  20. Husak, J. G., J. Michaelsen, and C. Funk, 2007. Use of the gamma distribution to represent monthly rainfall in Africa for drought monitoring applications. International Journal of Climatology 27(7): 935-944. doi:10.1002/joc.1441. https://doi.org/10.1002/joc.1441
  21. Jang, H., N. Kang, H. Noh, D. R. Lee, C. Choi, and H. S. Kim, 2015. Applicability of spatial interpolation methods for the estimation of rainfall field. Journal of Wetlands Research 17(4): 370-379. doi:10.17663/JWR.2015.17.4.370. https://doi.org/10.17663/JWR.2015.17.4.370
  22. Jang, S., J. Rhee, S. Yoon, T. Lee, and K. Park, 2017. Evaluation of GPM IMERG applicability uisng SPI based satellite precipitation. Journal of the Korean Society of Agricultural Engineers 59(3): 29-39. doi:10.5389/KSAE.2017.59.3.029. https://doi.org/10.5389/KSAE.2017.59.3.029
  23. Joyce, R., J. Janowiak, P. Arkin, and P. Xie, 2004. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology 5(3): 487-503. doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2. https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
  24. Katsanos, D., A. Retalis, and S. Michaelides, 2016. Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period. Atmospheric Research 169:459-464. doi:10.1016/j.atmosres.2015.05.015. https://doi.org/10.1016/j.atmosres.2015.05.015
  25. Kidd, C., D. R. Kniveton, M. C. Todd, and T. J. Bellerby, 2003. Satellite rainfall estimation using combined passive microwave and infrared algorithms. Journal of Hydrometeorology 4: 1088-1104. doi:10.1175/1525-7541(2003)004<1088:SREUCP>2.0.CO;2. https://doi.org/10.1175/1525-7541(2003)004<1088:SREUCP>2.0.CO;2
  26. Lee, H. J., W. H. Nam, D. H. Yoon, E. M. Hong, D. E. Kim, D. M. Svoboda, T. Tadesse, and B. D. Wardlow, 2019. Satellite-based Evaporative Stress Index (ESI) as an indicator of agricultural drought in North Korea. Journal of the Korean Society of Agricultural Engineers 61(3): 1-14. doi:10.5389/KSAE.2019.61.3.001. https://doi.org/10.5389/KSAE.2019.61.3.001
  27. Lee, S. H., W. S. Ahn, W. S. Lee, J. H. Choi, and S. Y. Kim, 2017. Assessment of the usefulness of the machine performance check system that is an evaluation tools for the determination of daily beam output. Journal of the Korean Society for Radiotherapeutic Technology 29(2): 65-73.
  28. Lee, T., S. Kim, Y. Jung, and Y. Shin, 2018. Assessment of agricultural drought using satellite-based TRMM/GPM precipitation images: At the province of Chungcheongbukdo. Journal of the Korean Society of Agriculture Engineers 60(4): 73-82. doi:10.5389/KSAE.2018.60.4.073.
  29. Miao, C., J. Ni, and A. G. L. Borthwick, 2010. Recent changes of water discharge and sediment load in the Yellow River basin, China. Progress in Physical Geography 34(4):541-561. doi:10.1177/0309133310369434. https://doi.org/10.1177/0309133310369434
  30. Moon, J. W., C. G. Jung, and D. R. Lee, 2013. Parameter regionalization of Hargreaves equation based on climatological. Journal of Korea Water Resources Association 46(9):935-948. doi:10.3741/JKWRA.2013.46.9.933.
  31. Mun, Y. S., W. H. Nam, M. G. Jeon, T. Kim, E. M. Hong, M. J. Hayes, and T. Tadesse, 2019. Application of meteorological drought index using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) based on global satellite-assisted precipitation products in Korea. Journal of the Korean Society of Agricultural Engineers 61(2): 1-11. doi:10.5389/KSAE.2019.61.2.001. https://doi.org/10.5389/KSAE.2019.61.2.001
  32. Mun, Y. S., W. H. Nam, T. Kim, E. M. Hong, and C. Sur, 2020. Evaluation and comparison of meteorological drought index using multi-satellite based precipitation products in East Asia. Journal of the Korean Society of Agricultural Engineers 62(1): 85-95. doi:10.5389/KSAE.2020.62.1.085.
  33. Nam, W. H., M. J. Hayes, M. D. Svoboda, T. Tadesse, and D. A. Wilhite, 2015. Drought hazard assessment in the context of climate change for South Korea. Agricultural Water Management 160: 106-117. doi:10.1016/j.agwat.2015.06.029. https://doi.org/10.1016/j.agwat.2015.06.029
  34. Nam, W. H., E. M. Hong, J. Y. Choi, T. Kim, M. J. Hayes, and M. D. Svoboda, 2017. Assessment of the extreme 2014-2015 drought events in North Korea using weekly Standardized Precipitation Evapotranspiration Index (SPEI). Journal of the Korean Society of Agriculture Engineers 59(4): 65-74. doi:10.5389/KSAE.2017.59.4.065.
  35. Nam, W. H., T. Tadesse, B. D. Wardlow, M. J. Hayes, M. D. Svoboda, E. M. Hong, Y. A. Pachepsky, and M. W. Jang, 2018a. Developing the vegetation drought response index for South Korea (VegDRI-SKorea) to assess the vegetation condition during drought events. International Journal of Remote Sensing 39(5): 1548-1574. doi:10.1080/01431161.2017.1407047. https://doi.org/10.1080/01431161.2017.1407047
  36. Nam, W. H., G. A. Baigorria, E. M. Hong, T. Kim, Y. S. Choi, and S. Feng, 2018b. The fingerprint of climate change and urbanization in South Korea. Atmosphere 9: 273. doi:10.3390/atmos9070273. https://doi.org/10.3390/atmos9070273
  37. Shukla, S., A. McNally, G. J. Husak, and C. Funk, 2014. A seasonal agricultural drought forecast system for food-insecure regions of East Africa. Hydrology and Earth System Sciences 18(10): 3907-3921. doi:10.5194/hess-18-3907-2014. https://doi.org/10.5194/hess-18-3907-2014
  38. Sorooshian, S., K. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological Society 81(9): 2035-2046. doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2. https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
  39. Sun, S., H. Chen, W. Ju, G. Wang, G. Sun, J. Huang, H. Ma, C. Gao, and W. Hua, 2017. On the coupling between precipitation and potential evapotranspiration: Contributions to decadal drought anomalies in the Southwest China. Climate Dynamics 48(11-12): 3779-3797. doi:10.1007/s00382-016-3302-5. https://doi.org/10.1007/s00382-016-3302-5
  40. Tote, C., D. Patricio, H. Boogaard, R. V. D. Wijngaart, E. Tarnavsky, and C. Funk, 2015. Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique. Remote Sensing 7(2): 1758-1776. doi:10.3390/rs70201758. https://doi.org/10.3390/rs70201758
  41. Verdin, A., B. Rajagopalan, W. Kleiber, and C. Funk, 2015. A Bayesian kriging approach for blending satellite and ground precipitation observations. Water Resources Research 51: 908-921. doi:10.1002/2014WR015963. https://doi.org/10.1002/2014WR015963
  42. Vila, D. A., L. G. G. de Goncalves, D. L. Toll, and J. R. Rozante, 2009. Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America. Journal of Hydrometeorology 10(2): 533-543. doi:10.1175/2008JHM1048.1. https://doi.org/10.1175/2008JHM1048.1
  43. Xie, P., and P. Arkin, 1997. Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bulletin of the American Meteorological Society 78(11): 2539-2558. doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2. https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
  44. Xie, P., J. E. Janowiak, P. A. Arkin, R. Adler, A. Gruber, R. Ferraro, G. J. Huffman, and S. Curtis, 2003. GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. Journal of Climate 16(13): 2197-2214. doi:10.1175/2769.1. https://doi.org/10.1175/2769.1
  45. Yang, F., H. Lu, K. Yang, J. He, W. Wang, J. S. Wright, C. Li, M. Han, and Y. Li, 2017. Evaluation of multiple forcing data sets for precipitation and shortwave radiation over major land areas of China. Hydrology and Earth System Sciences 21(11): 5805-5821. doi:10.5194/hess-21-5805-2017. https://doi.org/10.5194/hess-21-5805-2017