DOI QR코드

DOI QR Code

Evaluation of Regional Drought Vulnerability Assessment Based on Agricultural Water and Reservoirs

지역기반 농업용수의 가뭄재해 취약성 평가

  • Mun, Young-Sik (Department of Bioresources and Rural Systems Engineering, Hankyong National University) ;
  • Nam, Won-Ho (Department of Bioresources and Rural Systems Engineering, Institute of Agricultural Environmental Science, National Agricultural Water Research Center, Hankyong National University) ;
  • Jeon, Min-Gi (Department of Bioresources and Rural Systems Engineering, Hankyong National University) ;
  • Kim, Han-Joong (Department of Bioresources and Rural Systems Engineering, Institute of Agricultural Enviromental Science, Hankyong National University) ;
  • Kang, Ku (EKtechnology) ;
  • Lee, Jung-Chul (Overseas Business Department, Korea Rural Community Corporation) ;
  • Ha, Tae-Hyun (Agricultural Drought Mitigation Center, Korea Rural Community Corporation) ;
  • Lee, Kwangya (Agricultural Drought Mitigation Center, Korea Rural Community Corporation)
  • Received : 2020.03.12
  • Accepted : 2020.03.18
  • Published : 2020.03.31

Abstract

Drought is one of the most influential disasters in sustainable agriculture and food security of nations. In order to preemptively respond to agricultural droughts, vulnerability assessments were conducted to predict the possibility of drought in the region, the degree of direct or indirect damage, and the ability to cope with the damage. Information on agricultural drought vulnerability status of different regions is extremely useful for implementation of long term drought management measures. The purpose of this study is to develop and implement a quantitative approach for measuring agricultural drought vulnerability at sub-district level based on agricultural water and reservoirs. To assess the vulnerability in a quantitative manner and also to deal with different physical and socioeconomic data on the occurrence of agricultural drought, we selected the appropriate factors for the assessment of agricultural drought vulnerability through preceding studies, and analyzed the meteorological and agricultural reservoir data from 2015 to 2018. Each item was weighted using AHP (Analytic Hierarchy Process) analysis and evaluated through the agricultural drought vulnerability estimation. The entire national vulnerability assessments showed that Ganghwa, Naju, and Damyang were the most vulnerable to agricultural droughts. As a result of analyzing spatial expression, Gyeongsang-do is relatively more vulnerable to drought than Gangwon-do and Gyeonggi-do. The results revealed that the methodology and evaluation items achieved good performance in drought response. In addition, vulnerability assessments based on agricultural reservoir are expected to contribute supporting effective drought decisions in the field of agricultural water management.

Acknowledgement

Supported by : 행정안전

References

  1. Ahn, S. R., J. Y. Park, I. K. Jung, S. J. Na, and S. J. Kim, 2009. Hydrological drought assessment of agricultural reservoirs based on SWSI in Geum river basin. Journal of the Korean Society of Agriculture Engineers 51(5): 35-49. doi:10.5389/KSAE.2009.51.5.035.
  2. Go, J. G., and H. S. Kim, 2009. A study on vulnerability assessment to climate change in Gyeonggi-Do, 1-1. Gyeonggi Research Institute.
  3. Hong, E. M., W. H. Nam, J. Y. Choi, and Y. A. Pachepsky, 2016. Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea. Agricultural Water Management 165: 163-180. doi:10.1016/j.agwat.2015.12.003. https://doi.org/10.1016/j.agwat.2015.12.003
  4. Intergovernmenal Panel on Climate Change (IPCC), 2001. Climate change 2001: The scientific basis. Contribution of working group I to the third report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK.
  5. Intergovernmental Panel on Climate Change (IPCC), 2007. Climate change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK.
  6. Jang, J. S., 2019. Hydrometeorological characteristics and the spatial distribution of agricultural droughts. Journal of the Korean Society of Agricultural Engineers 61(2): 105-115. doi:10.5389/KSAE.2019.61.2.105. https://doi.org/10.5389/KSAE.2019.61.2.105
  7. Jang, M. W., S. J. Kim, S. J. Bae, S. H. Yoo, K. H. Jung, and S. W. Hwang, 2019. Assessing vulnerability to agricultural drought of pumping stations for preparing climate change. Journal of the Korean Society of Agricultural Engineers 61(6): 31-40. doi:10.538 9/KSAE.2019.61.6.031.
  8. Kim, C. H., 2019. Climate change vulnerability assessment of agricultural reservoirs using proxy variables. Ph.d. diss., Konkuk University.
  9. Kim, S. J., S. J. Bae, J. Y. Choi, S. P. Kim, S. K. Eun, S. H. Yoo, T. I. Jang, N. Y. Goh, S. W. Hwang, S. J. Kim, T. S. Park, K. H. Jeong, and S. H. Song, 2018. Analysis on the impact of climate change on the survey of rural water district and agricultural production infrastructure. Journal of the Korean Society of Agricultural Engineers 60(5): 1-15. doi:10.5389/KSAE.2018.60.5.001. https://doi.org/10.5389/KSAE.2018.60.5.001
  10. Kim, S. J., S. M. Kim, and S. M. Kim, 2013. A study of the vulnerability assessment for agricultural infrastructure using principal component analysis. Journal of the Korean Society of Agricultural Engineers 55(1): 31-38. doi:10.5389/KSAE.2013.55.1.031. https://doi.org/10.5389/KSAE.2013.55.1.031
  11. Kim, S. H., M. H. Lee, and D. H. Bae, 2016. Estimation and assessment of natural drought index using principal component analysis. Journal of Korea Water Resources Association 49(6): 565-577. doi:10.3741/JKWRA.2016.49.6.565. https://doi.org/10.3741/JKWRA.2016.49.6.565
  12. Korea Rural Community Corporation (KRC), 2018. A study on survey of impact of climate change on rural water supply and enhancement of vulnerability assessment methodology. Naju, Jeonnam.
  13. Lee, C. W., H. J. Shin, M. S. Kwon, G. M. Lee, S. H. Nam, and M. S. Kang, 2019. An approach to drought vulnerability assessment using TOPSIS method. Journal of the Korean Association of Geographic Information Studies 22(4): 102-115. doi:10.11108/kagis.2019.22.4.102.
  14. Lee, S. J., J. D. Song, T. I. Jang, D. M. Sul, and J. K. Son, 2018. A study on the derivation of the user-oriented agricultural drought assessment criteria using the AHP technique. Journal Of The Korean Society Of Rural Planning 24(4): 47-55. doi:10.7851/Ksrp.2018.24.4.047.
  15. Lee, Y. H., Y. J. Oh, C. S. Na, M. H. Kim, K. K. Kang, and S. T. Yoon, 2013. Vulnerability assessment on spring drought in the field of agriculture. Climate Change Research 4(4): 397-407.
  16. Ministry of Land Infrastructure and Transport (MLIT), 2002. 2001 Drought record research report. Sejong, Korea.
  17. Ministry of Environment (ME), 2016. Drought vulnerability assessment and limited water supply guidelines. Sejong, Korea.
  18. Mun, Y. S., W. H. Nam, T. G. Kim, E. M. Hong, and C. Y. Sur, 2020. Evaluation and comparison of meteorological drought index using multi-satellite based precipitation products in East Asia. Journal of the Korean Society of Agricultural Engineers 62(1): 85-95. doi:10.5389/KSAE.2020.62.1.085.
  19. Myong, S. J., 2010. Assessing vulnerability to climate change of the pysical infrastructure and developing adaption measures in Korea II, 53. green growth study 2010-13, City Hall-daero, Sejongsi, Korea: Korea Environment Institute.
  20. Nam, W. H., E. M. Hong, and J. Y. Choi, 2014. Uncertainty of water supply in agricultural reservoirs considering the climate change. Journal of the Korean Society of Agricultural Engineers 56(2): 11-23. doi:10.5389/KSAE.2014.56.2.011. https://doi.org/10.5389/KSAE.2014.56.2.011
  21. Nam, W. H., J. Y. Choi, M. W. Jang, and E. M. Hong, 2013. Agricultural drought risk assessment using reservoir drought index. Journal of the Korean Society of Agricultural Engineers 55(3): 41-49. doi:10.5389/KSAE.2013.55.3.041. https://doi.org/10.5389/KSAE.2013.55.3.041
  22. Nam, W. H., M. J. Hayes, D. A. Wilhite, and M. Svoboda, 2015. Projection of ttemporal trends on drought characteristics using the standardized precipitation evapotranspiration index(SPEI) in South Korea. Journal of the Korean Society of Agricultural Engineers 57(1): 37-45. doi:10.5389/KSAE2015.57.1.037. https://doi.org/10.5389/KSAE.2015.57.1.037
  23. Park, Y. K., W. Y. Cha, J. S. Kim, and S. D. Kim, 2017. Metropolitan socio-economic disaster vulnerability assessment. Journal of the Korean Society of Hazard Mitigation 17(1):353-364. doi:10.9798/KOSHAM.2017.17.1.353. https://doi.org/10.9798/KOSHAM.2017.17.1.353
  24. Rosenberg, N. J., 1979. Drought in the great plains-Research on impact and strategies. In Proceedings of the Workshop on Research in Great Plains Drought Management Strategies, 26-28, University of Nebraska, Lincoln, NE.
  25. Saaty, T. L., 1980. The Analytic Hierarchy Process, New York: McGraw-Hill.
  26. Seo, S. S., D. G. Kim, K. H. Lee, H. S. Kim, and T. W. Kim, 2009. Estimation of drought damage based on agricultural and domestic water use. Journal of Wetlands Research 11(2): 77-87.
  27. Shin, J. H., 2018. Analysis of drought vulnerable areas using neural-network algorithm. Ph.d. diss., Sungkyunkwan University.
  28. Shin, H. J., J. Y. Lee, S. M. Jo, S. M. Jeon, M. S. Kim, S. S. Cha, and C. G. Park, 2019. Vulnerability evaluation of groundwater well efficiency and capacity in drought vulnerable areas. Journal of the Korean Society of Agricultural Engineers 61(6): 41-53. doi:10.5389/KSAE.2019.61.6.041.
  29. Svoboda, M., D. LeComte, M. Hayes, R. Heim, K. Gleason, J. Angel, B. Rippey, R. Tunker, M. Palecki, D. Stooksbury, D. Miskus, and S. Stephens, 2002. The drought monitor. Bulletin of the American Meteorological Society 83(8):1181-1190. doi:10.1175/1520-0477-83.8.1181. https://doi.org/10.1175/1520-0477-83.8.1181
  30. Tadesse, T., J. F. Brown, and M. J. Hayes, 2005. A new approach for predicting drought-related vegetation stress: Integrating satellite, climate, and biophysical data over the U.S. central plains. ISPRS Journal of Photogrammetry & Remote Sensing 59(4): 244-253. doi:10.1016/j.isprsjprs.2005.02.003. https://doi.org/10.1016/j.isprsjprs.2005.02.003
  31. United Nations Development Programme (UNDP), 2005. Adaptation policy frameworks for climate change: Developing strategies, policies and measures. Cambridge: Cambridge University Press.
  32. Xia, Y., M. B. Ek, C. D. Peters-Lidard, D. Mocko, M, Svoboda, J. Sheffield, and E. F. Wood, 2014. Application of USDM statistics in NLDAS-2: Optimal blended NLDAS drought index over the continental United States. Journal of Geophysical Research: Atmosphere 119: 2947-2965. doi:10.1002/2013JD020994. https://doi.org/10.1002/2013JD020994
  33. Yang, J. S., J. H. Park, and N. K. Kim, 2012. Development of drought vulnerability index using trend analysis. Journal of the Korean Society of Civil Engineers 32(3): 185-192. doi:10.12652/Ksec.2012.32.3B.185. https://doi.org/10.12652/Ksce.2012.32.5C.185
  34. Yoo, G. Y., and I. A. Kim, 2008. Development of guidelines for establishing adaptation measures based on the local government's climate change vulnerability status. Sejong City: Korea Environment Institute.
  35. Yoon, D. H., W. H. Nam, H. J. Lee, E. M. Hong, T. G. Kim, D. E. Kim, A. K. Shin, and D. S. Mark, 2018. Application of evaporative stress index (ESI) for satellitebased agricultural drought monitoring in South Korea. Journal of the Korean Society of Agricultural Engineers 60(6): 121-131. doi:10.5389/KSAE.2018.60.6.121. https://doi.org/10.5389/KSAE.2018.60.6.121