DOI QR코드

DOI QR Code

Recent Research Progress on the Atomic Layer Deposition of Noble Metal Catalysts for Polymer Electrolyte Membrane Fuel Cell

고분자 전해질 연료전지용 촉매 소재 개발을 위한 원자층증착법 연구 동향

  • Han, Jeong Hwan (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 한정환 (서울과학기술대학교 신소재공학과)
  • Received : 2020.02.11
  • Accepted : 2020.02.21
  • Published : 2020.02.28

Abstract

It is necessary to fabricate uniformly dispersed nanoscale catalyst materials with high activity and long-term stability for polymer electrolyte membrane fuel cells with excellent electrochemical characteristics of the oxygen reduction reaction and hydrogen oxidation reaction. Platinum is known as the best noble metal catalyst for polymer electrolyte membrane fuel cells because of its excellent catalytic activity. However, given that Pt is expensive, considerable efforts have been made to reduce the amount of Pt loading for both anode and cathode catalysts. Meanwhile, the atomic layer deposition (ALD) method shows excellent uniformity and precise particle size controllability over the three-dimensional structure. The research progress on noble metal ALD, such as Pt, Ru, Pd, and various metal alloys, is presented in this review. ALD technology enables the development of polymer electrolyte membrane fuel cells with excellent reactivity and durability.

Acknowledgement

Supported by : 서울과학기술대학교

References

  1. Fuel cell, From Wikipedia, the free encyclopaedia. Available online at: http://en.wikipedia.org/wiki/Fuelcell.
  2. S. Mekhilef, R. Saidur and A. Safari: Renew. Sustain. Energy Rev., 16 (2012) 981-989. https://doi.org/10.1016/j.rser.2011.09.020
  3. A. Kirubakaran, S. Jain and R. K. Nema: Renew. Sustain. Energy Rev., 13 (2009) 2430. https://doi.org/10.1016/j.rser.2009.04.004
  4. A. J. Stephen, N. V. Rees, I. Mikheenko and L. E. Macaskie: Front. Energy Res., 7 (2019) 1. https://doi.org/10.3389/fenrg.2019.00001
  5. T. R. Ralph and M. P. Hogarth: Platinum Metals Rev., 46 (2002) 3.
  6. N. Tian, B.-A. Lu, X.-D. Yang, R. Huang, Y.-X. Jiang, Z.-Y. Zhou and S.-G. Sun: Electrochem. Energy. Rev., 1 (2018) 54. https://doi.org/10.1007/s41918-018-0004-1
  7. A. Esmaeilifar, S. Rowshanzamir, M. H. Eikani and E. Ghazanfari: Energy, 35 (2010) 3941. https://doi.org/10.1016/j.energy.2010.06.006
  8. S. Litster and G. McLean: J. Power Sources, 130 (2004) 61. https://doi.org/10.1016/j.jpowsour.2003.12.055
  9. Y. Yuan, J. A. Smith, G. Goenaga, D.-J. Liu, Z. Luo and J. Liu: J. Power Sources, 196 (2011) 6160. https://doi.org/10.1016/j.jpowsour.2011.03.026
  10. Z. Song, M. N. Banis, H. Liu, L. Zhang, Y. Zhao, J. Li, K. Doyle-Davis, R. Li, S. Knights, S. Ye, G. A. Botton, P. He and X. Sun: ACS Catal0., 9 (2019) 5365. https://doi.org/10.1021/acscatal.8b04504
  11. D. M. King, J. A. Spencer II, X. Liang, L. F. Hakim and A. W. Weimer: Surf. Coat. Technol., 201 (2007) 9163. https://doi.org/10.1016/j.surfcoat.2007.05.002
  12. J. A. McCormick, B. L. Cloutier and A. W. Weimer: J. Vac. Sci. Technol. A, 25 (2007) 67. https://doi.org/10.1116/1.2393299
  13. S. W. Park, J. W. Kim, H. J. Choi and J. H. Shim: J. Vac. Sci. Technol. A, 32 (2014) 01A115. https://doi.org/10.1116/1.4845735
  14. T. Aaltonen, M. Ritala, T. Sajavaara, J. Keinonen and M. Leskela: Chem. Mater., 15 (2003) 1924. https://doi.org/10.1021/cm021333t
  15. J. Hamalainen, F. Munnik, M. Ritala and M. Leskela: Chem. Mater., 20 (2008) 6840. https://doi.org/10.1021/cm801187t
  16. W.-J. Lee, Z. Wan, C.-M. Kim, I.-K. Oh, R. Harada, K. Suzuki, E.-A. Choi and S.-H. Kwon: Chem. Mater., 31 (2019) 5056. https://doi.org/10.1021/acs.chemmater.9b00675
  17. C. Wang, L. Hu, K. Poeppelmeier, P. C Stair and L. Marks: Nanotechnology, 28 (2017) 185704. https://doi.org/10.1088/1361-6528/aa688d
  18. A. J. M. Mackus, N. Leick, L. Baker and W. M. M. Kessels: Chem. Mater., 24 (2012) 1752. https://doi.org/10.1021/cm203812v
  19. A. J. M. Mackus, M. A. Verheijen, N. Leick, A. A. Bol and W. M. M. Kessels: Chem. Mater., 25 (2013) 1905. https://doi.org/10.1021/cm400562u
  20. H.-B.-R. Lee and S. F. Bent: Chem. Mater., 27 (2015) 6802. https://doi.org/10.1021/acs.chemmater.5b03076
  21. J. J. Pyeon, C. J. Cho, S.-H. Baek, C.-Y. Kang, J.-S. Kim, D. S. Jeong and S. K. Kim: Nanotechnology, 26 (2015) 304003. https://doi.org/10.1088/0957-4484/26/30/304003
  22. Y.-C. Hsueh, C.-C. Wang, C.-C. Kei, Y.-H. Lin, C. Liu and T.-P. Perng: J. Catal., 294 (2012) 63. https://doi.org/10.1016/j.jcat.2012.07.006
  23. V. C. Anitha, R. Zazpe, M. Krbal, J. Yoo, H. Sopha, J. Prikryl, G. Cha, S. Slang, P. Schmuki and J. M. Macak: J. Catal., 365 (2018) 86. https://doi.org/10.1016/j.jcat.2018.06.017
  24. W.-J. Lee, S. Bera, H.-C. Shin, W.-P. Hong, S.-J. Oh, Z. Wan and S.-H. Kwon: Adv. Mater. Interfaces, 6 (2019) 1901210. https://doi.org/10.1002/admi.201901210
  25. C. Liu, C.-C. Wang, C.-C. Kei, Y.-C. Hsueh and T.-P. Perng: Small, 5 (2009) 1535. https://doi.org/10.1002/smll.200900278
  26. J. J. Senkevich, F. Tang, D. Rogers, J. T. Drotar, C. Jezewski, W. A. Lanford, G.-C. Wang and T.-M. Lu: Chem. Vap. Deposition, 9 (2003) 258. https://doi.org/10.1002/cvde.200306246
  27. H. Feng, J. W. Elam, J. A. Libera, W. Setthapun and P. C. Stair: Chem. Mater., 22 (2010) 3133. https://doi.org/10.1021/cm100061n
  28. M. J. Weber, A. J. M. Mackus, M. A. Verheijen, V. Longo, A. A. Bol and W. M. M. Kessels: J. Phys. Chem. C, 118 (2014) 8702. https://doi.org/10.1021/jp5009412
  29. Y. Lei, B. Liu, J. Lu, R. J. Lobo-Lapidus, T. Wu, H. Feng, X. Xia, A. U. Mane, J. A. Libera, J. P. Greeley, J. T. Miller and J. W. Elam: Chem. Mater., 24 (2012) 3525. https://doi.org/10.1021/cm300080w
  30. K. Cao, Q. Zhu, B. Shan and R. Chen: Sci. Rep., 5 (2015) 8470. https://doi.org/10.1038/srep08470
  31. A.-C. Johansson, J. V. Larsen, M. A. Verheijen, K. B. Haugshoj, H. F. Clausen, W. M. M. Kessels, L. H. Christensen and E. V. Thomsen: J. Catal., 311 (2014) 481. https://doi.org/10.1016/j.jcat.2014.01.001
  32. A.-C. Johansson, R. B. Yang, K. B. Haugshoj, J. V. Larsen, L. H. Christensen and E. V. Thomsen: Int. J. Hydrogen Energy, 38 (2013) 11406. https://doi.org/10.1016/j.ijhydene.2013.06.089
  33. A. Santasalo-Aarnio, E. Sairanen, R. M. Aran-Ais, M. C. Figueiredo, J. Hua, J. M. Feliu, J. Lehtonen, R. Karinen and T. Kallio: J. Catal., 309 (2014) 38. https://doi.org/10.1016/j.jcat.2013.08.027
  34. L. Assaud, E. Monyoncho, K. Pitzschel, A. Allagui, M. Petit, M. Hanbücken, E. A. Baranova and L. Santinacci: Beilstein J. Nanotechnol., 5 (2014) 162. https://doi.org/10.3762/bjnano.5.16
  35. J. Lu, K.-B. Low, Y. Lei, J. A. Libera, A. Nicholls, P. C. Stair and J. W. Elam: Nat. Commun., 5 (2014) 3264 https://doi.org/10.1038/ncomms4264
  36. C.-T. Hsieh, Y.-Y. Liu, D.-Y. Tzou and W.-Y. Chen: J. Phys. Chem. C, 116 (2012) 26735. https://doi.org/10.1021/jp303552j
  37. O. A. Petrii: J. Solid State Electrochem., 12 (2008) 609. https://doi.org/10.1007/s10008-007-0500-4
  38. E. Rikkinen, A. Santasalo-Aarnio, S. Airaksinen, M. Borghei, V. Viitanen, J. Sainio, E. I. Kauppinen, T. Kallio and A. O. I. Krause: J. Phys. Chem. C, 115 (2011) 23067. https://doi.org/10.1021/jp2083659
  39. S. T. Christensen, H. Feng, J. L. Libera, N. Guo, J. T. Miller, P. C. Stair and J. W. Elam: Nano Lett., 10 (2010) 3047. https://doi.org/10.1021/nl101567m
  40. J. C. Meier, C. Galeano, I. Katsounaros, J. Witte, H. J. Bongard, A. A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schuth and K. J. J. Mayrhofer: Beilstein J. Nanotechnol., 5 (2014) 44. https://doi.org/10.3762/bjnano.5.5
  41. C. Marichy, G. Ercolano, G. Caputo, M. G. Willinger, D. Jones, J. Rozière, N. Pinna and S. Cavaliere: J. Mater. Chem. A, 4 (2016) 969. https://doi.org/10.1039/C5TA08432F
  42. Z. Song, B. Wang, N. Cheng, L. Yang, D. Banham, R. Li, S. Ye and X. Sun: J. Mater. Chem. A, 5 (2017) 9760. https://doi.org/10.1039/C7TA01926B