Immunomodulatory Effects of β-sitosterol and Daucosterol Isolated from Dioscorea batatas on LPS-stimulated RAW 264.7 and TK-1 Cells

산약에서 분리한 β-sitosterol과 daucosterol의 RAW 264.7 세포와 TK-1 세포에서의 면역 활성 조절 효능

  • Park, Min-Kyung (Department of Biological Sciences and Biotechnology, Andong National University) ;
  • Cho, Sehee (Department of Biological Sciences and Biotechnology, Andong National University) ;
  • Ahn, Tae-Kyu (Department of Biological Sciences and Biotechnology, Andong National University) ;
  • Kim, Do-Hyun (Department of Biological Sciences and Biotechnology, Andong National University) ;
  • Kim, So-Yeon (Department of Food and Nutrition, Andong National University) ;
  • Lee, Jin-Wook (Department of Biological Sciences and Biotechnology, Andong National University) ;
  • Kim, Jee-In (Institute of Vaccine Biotechnology, Andong National University) ;
  • Seo, Eul-Won (Department of Biological Sciences and Biotechnology, Andong National University) ;
  • Son, Kun-Ho (Department of Food and Nutrition, Andong National University) ;
  • Lim, Jae-Hwan (Department of Biological Sciences and Biotechnology, Andong National University)
  • 박민경 (안동대학교 생명공학부) ;
  • 조세희 (안동대학교 생명공학부) ;
  • 안태규 (안동대학교 생명공학부) ;
  • 김도현 (안동대학교 생명공학부) ;
  • 김소연 (안동대학교 식품영양학과) ;
  • 이진욱 (안동대학교 생명공학부) ;
  • 김지인 (안동대학교 백신산업연구소) ;
  • 서을원 (안동대학교 생명공학부) ;
  • 손건호 (안동대학교 식품영양학과) ;
  • 임재환 (안동대학교 생명공학부)
  • Received : 2019.12.24
  • Accepted : 2020.02.20
  • Published : 2020.04.30


Although many studies on immune modulatory materials have used RAW 264.7 cells, few have used T cell-derived TK-1 cell lines. Moreover, although some studies have investigated the efficacy of plant-derived β-sitosterol, few have examined the immunomodulatory activity of its analogue, daucosterol. In this study, β-sitosterol and daucosterol were isolated from D. batatas and identified by nuclear magnetic resonance spectroscopy. To evaluate the immune-enhancing or inhibitory effects of the isolated phytosterols, the expression levels of the inflammatory response genes COX-2, TNF-α, IL-6, and iNOS were analyzed by RT-PCR. The relative expression levels of TNF-α and iNOS in RAW 264.7 cells were increased more than threefold with β-sitosterol treatment comparing to those of untreated control. In the case of TK-1 cells, the expression level of TNF-α was decreased and the expression level of iNOS was increased in a β-sitosterol concentration-dependent manner. The expression levels of COX-2, TNF-α, and IL-6 increased by approximately 0.7-1.2 times in RAW 264.7 cells treated with daucosterol compared to those of untreated control, but iNOS expression decreased by 0.8-0.18 times. In the case of daucosterol-treated TK-1 cells, the expression levels of TNF-α, IL-6, and iNOS were markedly reduced from those of TK-1 cells treated only with lipopolysaccaride. As a conclusion, β-sitosterol treatment increased TNF-α and iNOS expression levels in RAW 264.7 cells, thus exerting an immune- boosting effect. However, in TK-1 cells, iNOS expression increased while TNF-α expression decreased, indicating an immunosuppressive activity of β-sitosterol. Daucosterol appears to exert an immunosuppressive effect in both macrophages and T cell lines by inhibiting iNOS expression in RAW 264.7 cells and greatly inhibiting the expression of TNF-α, IL-6, and iNOS in TK-1 cells.


Supported by : 안동대학교


  1. Badillo, R. and Francis, D. 2014. Diagnosis and treatment of gastroesophageal reflux disease. World J. Gastrointest. Pharmacol. Ther. 5, 105-112.
  2. Bouic, P. J. and Lamprecht, J. H. 1999. Plant sterols and sterolins: a review of their immune-modulating properties. Altern. Med. Rev. 4, 170-177.
  3. Chae, S. W. 2005. Function and activation of NF-${\kappa}B$ in immune system. Kor. J. Otorhinolaryngol-Head Neck Surg. 48, 284-288.
  4. Cho, S. Y., Park, S. J., Kwon, M. J., Jeong, T. S., Bok, S. H., Choi, W. Y., Jeong, W. I., Ryu, S. Y., Do, S. H., Lee, C. S., Song, J. C. and Jeong, K. S. 2003. Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-${\kappa}B$ pathway in lipopolysaccharide-stimulated macrophage. Mol. Cell. Biochem. 243, 153-160.
  5. Choi, G. Y. and Kim, B. W. 2010. Experimental study on the antioxidant and antimicrobial properties of Dioscoreae Rhizoma. J. Int. Kor. Med. 31, 290-297.
  6. Choi, J. N., Choi, Y. H., Lee, J. M., Noh, I. C., Park, J. W., Choi, W. S. and Choi, J. H. 2012. Anti-inflammatory effects of $\beta$-sitosterol-$\beta$-D-glucoside from Trachelospermum jasminoides (Apocynaceae) in lipopolysaccharide-stimulated RAW 264.7 murine macrophages. Nat. Prod. Res. 26, 2340-2343.
  7. Hinz, B., Brune, K. and Pahl, A. 2000. Prostaglandin E2 upregulates cyclooxygenase-2 expression in lipopolysaccharidestimulated RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 272, 744-748.
  8. Hu, W., Yang, X., Zhe, C., Zhang, Q., Sun, L. and Cao, K. 2011. Puerarin inhibits iNOS, COX-2 and CRP expression via suppression of NF-${\kappa}B$ activation in LPS-induced RAW 264.7 macrophage cells. Pharmacol. Rep. 63, 781-789.
  9. Jeong, Y. Y. and Lee, Y. S. 2009. Protective effect of Rhizoma Dioscoreae on the gastric mucosal lesions induced by alcohol in rats. J. Physiol. Pathol. Kor. Med. 23, 639-644.
  10. Jung, D. H., Park, H. J., Byun, H. E., Park, Y. M., Kim, T. W., Kim, B. O., Um, S. H. and Pyo, S. 2010. Diosgenin inhibits macrophage-derived inflammatory mediators through downregulation of CK2, JNK, NF-${\kappa}B$ and AP-1 activation. Int. Immunopharmacol. 10, 1047-1054.
  11. Kang, Y. J., Han, A. R., Min, H. Y., Hong, J. Y., Seo, E. K. and Lee, S. K. 2009. Inhibitory effects of morachalcone A on lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells. Cancer Prev. Res. 14, 118-123.
  12. Kim, Y. B. 2001. Current clinical practice: chronic gastritis. Kor. J. Med. 61, 221-223.
  13. Kum, E. J., Park, S. J., Lee, B. H., Kim, J. S., Son, K. H. and Sohn, H. Y. 2006. Antifungal activity of phenanthrene derivatives from aerial bulbils of Dioscorea batatas Decne. J. Life Sci. 16, 647-652.
  14. Kurano, M., Iso-O, N., Hara, M., Noiri, E., Koike, K., Kadowaki, T. and Tsukamoto, K. 2011. Plant sterols increased IL-6 and TNF-$\alpha$ secretion from macrophages, but to a lesser extent than cholesterol. J. Atheroscler. Thromb. 18, 373-383.
  15. Lee, J. H., Lee, J. Y., Park, J. H., Jung, H. S., Kim, J. S., Kang, S. S., Kim, Y. S and Han, Y. 2007. Immunoregulatory activity by daucosterol, a beta-sitosterol glycoside, induces protective Th1 immune response against disseminated Candidiasis in mice. Vaccine 25, 3834-3840.
  16. Lee, T. Y., Lee, K. C., Chen, S. Y. and Chang, H. H. 2009. 6-gingerol inhibits ROS and iNOS through the suppression of PKC-$\alpha$ and NF-${\kappa}B$ pathways in lipopolysaccharidestimulated mouse macrophages. Biochem. Biophys. Res. Commun. 382, 134-139.
  17. Loizou, S., Lekakis, I., Chrousos, G. P. and Moutsatsou, P. 2010. Beta-sitosterol exhibits anti-inflammatory activity in human aortic endothelial cells. Mol. Nutr. Food Res. 54, 551-558.
  18. Luyen, B. T. T., Tai, B. H., Thao, N. P., Cha, J. Y., Lee, Y. M. and Kim, Y. H. 2014. A new phenolic component from Triticum aestivum sprouts and its effects on LPS-stimulated production of nitric oxide and TNF-$\alpha$ in RAW 264.7 cells. Phytother. Res. 28, 1064-1070.
  19. Ndengele, M. M., Bellone, C. J., Lechner, A. J. and Matuschak, G. M. 2000. Brief hypoxia differentially regulates LPS-induced IL-$1{\beta}$ and TNF-$\alpha$ gene transcription in RAW 264.7 cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 278, L1289-1296.
  20. Okoli, C. O. and Akah, P. A. 2004. Mechanisms of the anti-inflammatory activity of the leaf extracts of Culcasia scandens P. Beauv(Araceae). Pharmacol. Biochem. Behav. 79, 473-481.
  21. Park, Y. M., Lim, J. H., Jeong, H. J. and Seo, E. W. 2014. Protective effects of crude mucin and saponin from Dioscorea Rhizoma on gastric ulcer Induced by alcohol in rats. J. Life Sci. 24, 1200-1208.
  22. Park, Y. M., Lim, J. H. and Seo, E. W. 2015. Effect of Dioscorea Rhizoma on gastritis by acute gastric ulcer in rats. Kor. J. Plant Res. 28, 1-8.
  23. Prieto, J. M., Recio, M. C. and Giner, R. M. 2006. Anti-inflammatory activity of $\beta$-sitosterol in a model of oxazolone induced contact-delayed-type hypersensitivity. Boletin Bol. Latinoam. Caribe Plantas Med. Aromat. 5, 57-62.
  24. Rankin, J. A. 2004. Biological mediators of acute inflammation. AACN Adv. Crit. Care 15, 3-17.
  25. Rajavel, T., Mohankumar, R., Archunan, G., Ruckmani, K. and Devi, K. P. 2017. Beta sitosterol and daucosterol (phytosterols identified in Grewia tiliaefolia) perturbs cell cycle and induces apoptotic cell death in A549 cells. Sci. Rep. 7, 3418.
  26. Rethy, B., Kovacs, A., Zupko, I., Forgo, P., Vasas, A., Falkay, G. and Hohmann, J. 2006. Cytotoxic phenanthrenes from the rhizomes of Tamus communis. Planta. Med. 72, 767-770.
  27. Saeidnia, S., Manayi, A., Gohari, A. R. and Abdollahi, M. 2014. The story of beta-sitosterol; a review. Eur. J. Med. Plants 4, 590-609.
  28. Said, E. A., Dupuy, F. P., Trautmann, L., Zhang, Y., Shi, Y., Elfar, M., Hill, B. J., Noto, A., Ancuta, P., Peretz, Y., Fonseca, S. G., Grevenynghe, J. V., Boulassel, M. R., Bruneau, J., Shoukry, N. H., Routy, J. P., Douek, D. K., Haddad, E. K. and Sekaly, R. P. 2010. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat. Med. 16, 452-459.
  29. Yamamoto, Y. and Gaynor, R. B. 2004. Ikappa-b kinases: Key regulators of the NF-${\kappa}B$ pathway. Trends Biochem. Sci. 29, 72-79.
  30. Yan, H., Kermouni, A., Abdel-Hafez, M. and Lau, D. C. W. 2003. Role of cyclooxygenases COX-1 and COX-2 in modulating adipogenesis in 3T3-L1 cells. J. Lipid Res. 44, 424-429.
  31. Walsh, L. J., Trinchieri, G., Waldorf, H. A., Whitaker, D. and Murphy, G. F. 1991. Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1. Proc. Natl. Acad. Sci. USA 88, 4220-4224.
  32. Woyengo, T. A., Ramprasath, V. R. and Jones, P. J. H. 2009. Anticancer effects of phytosterols. Eur. J. Clin. Nutr. 63, 813-820.