DOI QR코드

DOI QR Code

POSITIVELY WEAK MEASURE EXPANSIVE DIFFERENTIABLE MAPS

  • Ahn, Jiweon (Department of Mathematics Chungnam National University) ;
  • Lee, Manseob (Department of Mathematics Mokwon University)
  • Received : 2018.12.06
  • Accepted : 2020.03.05
  • Published : 2020.05.31

Abstract

In this paper, we introduce the new general concept of usual expansiveness which is called "positively weak measure expansiveness" and study the basic properties of positively weak measure expansive C1-differentiable maps on a compact smooth manifold M. And we prove that the following theorems. (1) Let ������ be the set of all positively weak measure expansive differentiable maps of M. Denote by int(������) is a C1-interior of ������. f ∈ int(������) if and only if f is expanding. (2) For C1-generic f ∈ C1 (M), f is positively weak measure-expansive if and only if f is expanding.

References

  1. J. Ahn and S. Kim, Stability of weak measure expansive diffeomorphisms, J. Korean Math. Soc. 55 (2018), no. 5, 1131-1142. https://doi.org/10.4134/JKMS.j170607
  2. J. Ahn, K. Lee, and M. Lee, Positively measure expansive and expanding, Commun. Korean Math. Soc. 29 (2014), no. 2, 345-349. https://doi.org/10.4134/CKMS.2014.29.2.345 https://doi.org/10.4134/CKMS.2014.29.2.345
  3. N. Aoki, K. Moriyasu, and N. Sumi, $C^1$-maps having hyperbolic periodic points, Fund. Math. 169 (2001), no. 1, 1-49. https://doi.org/10.4064/fm169-1-1 https://doi.org/10.4064/fm169-1-1
  4. A. Arbieto, Periodic orbits and expansiveness, Math. Z. 269 (2011), no. 3-4, 801-807. https://doi.org/10.1007/s00209-010-0767-5 https://doi.org/10.1007/s00209-010-0767-5
  5. S. Hayashi, Diffomorphisms in $F^1(M)$ satisfy Axiom A, Ergod. Th. & Dynam. Sys. 12 (1992), 233-253. https://doi.org/10.1017/S0143385700006726
  6. M. Lee, Continuum-wise expansiveness for generic diffeomorphisms, Nonlinearity 31 (2018), no. 6, 2982-2988. https://doi.org/10.1088/1361-6544/aaba38 https://doi.org/10.1088/1361-6544/aaba38
  7. M. Lee, Measure expansiveness for $C^1$ generic diffeomorphisms, Dyn. Sys. Appl. 27 (2018), 629-635. https://acadsol.eu/dsa/articles/27/3/11.pdf https://10.12732/dsa.v27i3.11
  8. M. Lee, Positively continuum-wise expansiveness for $C^1$ differentiable maps, Mathematics 7 (2019), 980. https://doi.org/10.3390/math7100980 https://doi.org/10.3390/math7100980
  9. K. Lee, M. Lee, K. Moriyasu, and K. Sakai, Positively measure-expansive differentiable maps, J. Math. Anal. Appl. 435 (2016), no. 1, 492-507. https://doi.org/10.1016/j.jmaa.2015.10.034 https://doi.org/10.1016/j.jmaa.2015.10.034
  10. R. Mane, An ergodic closing lemma, Ann. of Math. (2) 116 (1982), no. 3, 503-540. https://doi.org/10.2307/2007021 https://doi.org/10.2307/2007021
  11. C. A. Morales, Measure-expansive systems, 29 Coloquio Brasileiro de Matematica, 2013.
  12. A. Rovella and M. Sambarino, The $C^1$ closing lemma for generic $C^1$ endomorphisms, Ann. Inst. H. Poincare Anal. Non Lineaire 27 (2010), no. 6, 1461-1469. https://doi.org/10.1016/j.anihpc.2010.09.003 https://doi.org/10.1016/j.anihpc.2010.09.003
  13. K. Sakai, Positively expansive differentiable maps, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 10, 1839-1846. https://doi.org/10.1007/s10114-010-9149-5 https://doi.org/10.1007/s10114-010-9149-5
  14. K. Sakai, N. Sumi, and K. Yamamoto, Measure-expansive diffeomorphisms, J. Math. Anal. Appl. 414 (2014), no. 2, 546-552. https://doi.org/10.1016/j.jmaa.2014.01.023 https://doi.org/10.1016/j.jmaa.2014.01.023
  15. M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), 175-199. https://doi.org/10.2307/2373276 https://doi.org/10.2307/2373276
  16. W. R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc. 1 (1950), 769-774. https://doi.org/10.2307/2031982 https://doi.org/10.1090/S0002-9939-1950-0038022-3