DOI QR코드

DOI QR Code

HELMHOLTZ DECOMPOSITION AND SEMIGROUP THEORY TO THE FLUID AROUND A MOVING BODY

  • Received : 2019.04.16
  • Accepted : 2019.09.25
  • Published : 2020.05.31

Abstract

To understand the interaction of a fluid and a rigid body, we use the concept of B-evolution. Then in a similar way to the usual Navier-Stokes system, we obtain a Helmholtz type decomposition. Using B-evolution theory and the decomposition, we work on the semigroup to analyze the linear part of the system.

References

  1. C. Conca, J. San Martin, and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations 25 (2000), no. 5-6, 1019-1042. https://doi.org/10.1080/03605300008821540
  2. B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal. 146 (1999), no. 1, 59-71. https://doi.org/10.1007/s002050050136 https://doi.org/10.1007/s002050050136
  3. G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I, Springer Tracts in Natural Philosophy, 38, Springer-Verlag, New York, 1994.
  4. G. P. Galdi, On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications, in Handbook of mathematical fluid dynamics, Vol. I, 653-791, North-Holland, Amsterdam, 2002.
  5. M. Geissert, K. Gotze, and M. Hieber, $L^p$-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids, Trans. Amer. Math. Soc. 365 (2013), no. 3, 1393-1439. https://doi.org/10.1090/S0002-9947-2012-05652-2
  6. M. Grobbelaar-van Dalsen, Fractional powers of a closed pair of operators, Proc. Roy. Soc. Edinburgh Sect. A 102 (1986), no. 1-2, 149-158. https://doi.org/10.1017/S0308210500014566 https://doi.org/10.1017/S0308210500014566
  7. M. Grobbelaar-van Dalsen and N. Sauer, Dynamic boundary conditions for the Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A 113 (1989), no. 1-2, 1-11. https://doi.org/10.1017/S030821050002391X https://doi.org/10.1017/S030821050002391X
  8. M. D. Gunzburger, H.-C. Lee, and G. A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech. 2 (2000), no. 3, 219-266. https://doi.org/10.1007/PL00000954 https://doi.org/10.1007/PL00000954
  9. T. Hishida, $L^2$ theory for the operator ${\Delta}$ + (k ${\times}$ x) ${\cdot}{\nabla}$ in exterior domains, Nihonkai Math. J. 11 (2000), no. 2, 103-135.
  10. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. https://doi.org/10.1007/978-1-4612-5561-1
  11. J. A. San Martin, V. Starovoitov, and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal. 161 (2002), no. 2, 113-147. https://doi.org/10.1007/s002050100172 https://doi.org/10.1007/s002050100172
  12. N. Sauer, Linear evolution equations in two Banach spaces, Proc. Roy. Soc. Edinburgh Sect. A 91 (1981/82), no. 3-4, 287-303. https://doi.org/10.1017/S0308210500017510 https://doi.org/10.1017/S0308210500017510
  13. N. Sauer, The Friedrichs extension of a pair of operators, Quaestiones Math. 12 (1989), no. 3, 239-249. https://doi.org/10.1080/16073606.1989.9632181
  14. A. L. Silvestre, On the self-propelled motion of a rigid body in a viscous liquid and on the attainability of steady symmetric self-propelled motions, J. Math. Fluid Mech. 4 (2002), no. 4, 285-326. https://doi.org/10.1007/PL00012524 https://doi.org/10.1007/PL00012524