• Received : 2019.04.16
  • Accepted : 2019.09.25
  • Published : 2020.05.31


To understand the interaction of a fluid and a rigid body, we use the concept of B-evolution. Then in a similar way to the usual Navier-Stokes system, we obtain a Helmholtz type decomposition. Using B-evolution theory and the decomposition, we work on the semigroup to analyze the linear part of the system.


  1. C. Conca, J. San Martin, and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations 25 (2000), no. 5-6, 1019-1042.
  2. B. Desjardins and M. J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal. 146 (1999), no. 1, 59-71.
  3. G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I, Springer Tracts in Natural Philosophy, 38, Springer-Verlag, New York, 1994.
  4. G. P. Galdi, On the motion of a rigid body in a viscous liquid: a mathematical analysis with applications, in Handbook of mathematical fluid dynamics, Vol. I, 653-791, North-Holland, Amsterdam, 2002.
  5. M. Geissert, K. Gotze, and M. Hieber, $L^p$-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids, Trans. Amer. Math. Soc. 365 (2013), no. 3, 1393-1439.
  6. M. Grobbelaar-van Dalsen, Fractional powers of a closed pair of operators, Proc. Roy. Soc. Edinburgh Sect. A 102 (1986), no. 1-2, 149-158.
  7. M. Grobbelaar-van Dalsen and N. Sauer, Dynamic boundary conditions for the Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A 113 (1989), no. 1-2, 1-11.
  8. M. D. Gunzburger, H.-C. Lee, and G. A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech. 2 (2000), no. 3, 219-266.
  9. T. Hishida, $L^2$ theory for the operator ${\Delta}$ + (k ${\times}$ x) ${\cdot}{\nabla}$ in exterior domains, Nihonkai Math. J. 11 (2000), no. 2, 103-135.
  10. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.
  11. J. A. San Martin, V. Starovoitov, and M. Tucsnak, Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal. 161 (2002), no. 2, 113-147.
  12. N. Sauer, Linear evolution equations in two Banach spaces, Proc. Roy. Soc. Edinburgh Sect. A 91 (1981/82), no. 3-4, 287-303.
  13. N. Sauer, The Friedrichs extension of a pair of operators, Quaestiones Math. 12 (1989), no. 3, 239-249.
  14. A. L. Silvestre, On the self-propelled motion of a rigid body in a viscous liquid and on the attainability of steady symmetric self-propelled motions, J. Math. Fluid Mech. 4 (2002), no. 4, 285-326.