• Liu, Dajun (Institute of Mathematics School of Mathematics Sciences Nanjing Normal University) ;
  • Wei, Jiaqun (Institute of Mathematics School of Mathematics Sciences Nanjing Normal University)
  • Received : 2019.05.27
  • Accepted : 2020.01.17
  • Published : 2020.05.31


For a fixed semi-Wakamatsu-tilting module AT, we generalize the concepts of Auslander class, Bass class, and investigate many homological properties of such classes. Moreover, we establish an equivalence between the class of ∞-T-cotorsionfree modules and a subclass of the class of T-adstatic modules. Finally, a similar version of Auslander-Bridger approximation theorem and a nice property of relative cotranspose are obtained.


  1. I. Assem, D. Simson, and A. Skowronski, Elements of the representation theory of associative algebras. Vol. 1, London Mathematical Society Student Texts, 65, Cambridge University Press, Cambridge, 2006.
  2. M. Auslander and I. Reiten, Applications of contravariantly finite subcategories, Adv. Math. 86 (1991), no. 1, 111-152.
  3. M. Auslander and S. O. Smalo, Preprojective modules over Artin algebras, J. Algebra 66 (1980), no. 1, 61-122.
  4. S. Bazzoni, Equivalences induced by infinitely generated tilting modules, Proc. Amer. Math. Soc. 138 (2010), no. 2, 533-544.
  5. S. Bazzoni, F. Mantese, and A. Tonolo, Derived equivalence induced by infinitely generated n-tilting modules, Proc. Amer. Math. Soc. 139 (2011), no. 12, 4225-4234.
  6. H. Chen and C. Xi, Good tilting modules and recollements of derived module categories, Proc. Lond. Math. Soc. (3) 104 (2012), no. 5, 959-996.
  7. H. Chen and C. Xi, Good tilting modules and recollements of derived module categories, II, J. Math. Soc. Japan 71 (2019), no. 2, 515-554.
  8. M. T. Dibaei and A. Sadeghi, Linkage of modules and the Serre conditions, J. Pure Appl. Algebra 219 (2015), no. 10, 4458-4478.
  9. R. M. Fossum, P. A. Griffith, and I. Reiten, Trivial extensions of abelian categories, Lecture Notes in Mathematics, Vol. 456, Springer-Verlag, Berlin, 1975.
  10. E. L. Green, I. Reiten, and O. Solberg, Dualities on generalized Koszul algebras, Mem. Amer.Math. Soc. 159 (2002), no. 754, xvi+67 pp.
  11. H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 (2007), no. 4, 781-808.
  12. D. J. Liu and J. Q. Wei, n-T-cotorsionfree modules, Glasg. Math. J. (2019).
  13. Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986), no. 1, 113-146.
  14. J. J. Rotman, An Introduction to Homological Algebra, Pure and Applied Mathematics, 85, Academic Press, Inc., New York, 1979.
  15. X. Tang and Z. Huang, Homological aspects of the dual Auslander transpose, Forum Math. 27 (2015), no. 6, 3717-3743.
  16. T. Wakamatsu, On modules with trivial self-extensions, J. Algebra 114 (1988), no. 1, 106-114.
  17. T. Wakamatsu, Stable equivalence for self-injective algebras and a generalization of tilting modules, J. Algebra 134 (1990), no. 2, 298-325.
  18. R. Wisbauer, Static modules and equivalences, in Interactions between ring theory and representations of algebras (Murcia), 423-449, Lecture Notes in Pure and Appl. Math., 210, Dekker, New York, 2000.
  19. C. C. Xi, The relative Auslander-Reitein theory of modules,