DOI QR코드

DOI QR Code

Dynamic behavior of axially functionally graded simply supported beams

  • Selmi, Abdellatif (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam bin Abdulaziz University)
  • Received : 2019.05.18
  • Accepted : 2020.01.06
  • Published : 2020.06.25

Abstract

This paper focuses on the free vibration analysis of axially functionally graded (FG) Euler-Bernoulli beams. The material properties of the beams are assumed to obey the linear law distribution. The complexities in solving differential equation of transverse vibration of composite beams which limit the analytical solution to some special cases are overcome using the Differential Transformation Method (DTM). Natural frequencies and corresponding normalized mode shapes are calculated. Validation targets are experimental data or finite element results. Different parameters such as reinforcement distribution, ratio of the reinforcement Young's modulus to the matrix Young's modulus and ratio of the reinforcement density to the matrix density are taken into investigation. The delivered results prove the capability and the robustness of the applied method. The studied parameters are demonstrated to be very crucial for the normalized natural frequencies and mode shapes.

References

  1. Abdelaziz, H.H., Ait Amar Meziane, M., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel Compos. Struct., Int. J., 25(6), 693-704. https://doi.org/10.12989/SCS.2017.25.6.693
  2. Abualnour, M., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047
  3. Alireza, S., Mehrdad, F., Habiba, B. and Zouheir, F. (2017), "Dynamic response of functionally graded nanocomposite beams subjected to a mesh-free method", Transact. Can. Soc. Mech. Eng., 41(5), 884-899. https://doi.org/10.1139/tcsme-2017-518.
  4. ANSYS (2013), ANSYS workbench 13.0.1.
  5. Arikoglu, A. and Ozkol, I. (2005), "Solution of boundary value problems for integro-differential equations by using differential transform method", Appl. Math. Comput., 168(2), 1145-1158. https://doi.org/10.1016/j.amc.2004.10.009 https://doi.org/10.1016/j.amc.2004.10.009
  6. Aydogdu, M. (2004), "Semi-inverse method for vibration and buckling of axially functionally graded beams", J. Reinf. Plast. Compos., 27(7), 638-691. https://doi.org/10.117 7/0731684407081369
  7. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., Int. J., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  8. Bert, C.W. and Zeng, H. (2004), "Analysis of axial vibration of compound bars by differential transformation method", J. Sound Vib., 275(3-5), 641-647. https://doi.org/10.1016/j.jsv. 2003.06.019
  9. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., Int. J., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  10. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Tounsi, A. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano. Res., Int. J., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.191
  11. Bozyigit, B., Yesilce, Y. and Catal, S. (2018), "Free vibrations of axial-loaded beams resting on viscoelastic foundation using Adomian decomposition method and differential transformation", Int. J. Eng. Sci. Technol., 21(6), 1181-1193. https://doi.org/10.1016/j.jestch.2018.09.008
  12. Catal, S. (2008), "Solution of free vibration equations of beam on elastic soil by using differential transform method", Appl. Math. Model., 32(9), 1744-1757. https://doi.org/10.1016/j .apm.2007.06.010
  13. Catal, S. (2012), "Response of forced Euler-Bernoulli beams using differential transform method", Struct. Eng. Mech., Int. J., 42(1), 95-119. https://doi.org/10.12989/sem.2012.42. 1.095
  14. Catal, S. (2014), "Buckling analysis of semi-rigid connected and partially embedded pile in elastic soil using differential transform method", Struct. Eng. Mech., Int. J., 52(5), 971-995. https://doi.org/10.12989/sem.2014.52.5.971
  15. Catal, S., Bozyigit, B. and Yesilce, Y. (2017), "Differential transform method and Adomian decomposition method for free vibration analysis of fluid conveying Timoshenko pipeline", Struct. Eng. Mech., Int. J., 62(1), 65-77. https://doi.org/ 10.12989/sem.2017.62.1.065
  16. Cherif, R.H., Meradjah, M., Zidour, M., Tounsi, A., Belmahi, H. and Bensattalah, T. (2018), "Vibration analysis of nano beam using differential transform method including thermal effect", J. Nano. Res.-SW, 54(5), 1-14. https://doi.org/10.4028/www.scientific.net/JNanoR.54.1
  17. Davit, G., Burlayenko, V.N., Armine, A. and Atul, B. (2018), "Free vibration analysis of functionally graded beams with non-uniform cross-section using the differential transform method", J. Eng. Math., 110(1), 97-121. https://doi.org/10. 1007/s10665-017-9937-3
  18. Elishakoff, I. and Guede, Z. (2004), "Analytical polynomial solutions for vibrating axially graded beams", Mech. Adv. Mater. Struct., 11(6), 517-533. https://doi.org/10.1080/153764 90490452669
  19. Fourn, H., AitAtmane, H., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., Int. J., 27(1), 109-122. https://doi.org/10.12989/scs.2018.27.1.109
  20. Hassan, I. (2002), "On solving some eigenvalue problems by using a differential transformation", Appl. Math. Comput., 127(1), 1-22. https://doi.org/10.1016/S0096-3003(00)00123-5 https://doi.org/10.1016/S0096-3003(00)00123-5
  21. Huang, Y. and Li, X.F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform cross-section", J. Sound Vib., 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029
  22. Kahya, V. and Turan, M. (2017), "Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory", Compos. Pt. B Eng., 109, 108-115. https://doi.org/10.1016/j.compositesb. 2016.10.039
  23. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., Int. J., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099
  24. Li, X.F., Kang, Y.A. and Wu, J.X. (2013), "Exact frequency equations of free vibration of exponentially functionally graded beams", Appl. Acoust., 74(3), 413-420. http://jvs.sjtu.edu.cn/EN/Y2017/V36/I6/91
  25. Lin, S.C. and Hsiao, K.M. (2001), "Vibration analysis of a rotating Timoshenko beam", J. Sound Vib., 240(2), 303-322. https://doi.org/10.1006/jsvi.2000.3234
  26. Malik, M. and Dang, H.H. (1998), "Vibration analysis of continuous systems by differential transformation", Appl. Math. Comput., 96(1), 17-26. https://doi:10.1016/S0096-3003(97)10076-5 https://doi.org/10.1016/S0096-3003(97)10076-5
  27. Meksi, R, Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443
  28. Mohammad, H., Davood, D.G. and Mohsen, S. (2017), Differential Transformation Method for Mechanical Engineering Problems, Academic Press, p. 422.
  29. Mouffoki, A., AddaBedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., Int. J., 20(3), 369-383. https://doi.org/10.12989/sss.2017.20.3.369
  30. Ozdemir, O. and Kaya, M.O. (2006), "Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method", J. Sound Vib., 289(1), 413-420. https://doi.org/10.1016/j.jsv.2005.01.055
  31. Sepasgozar, S., Faraji, M. and Valipour, P. (2017), "Application of differential transformation method (DTM) for heat and mass transfer in a porous channel", J Propul. Power., 6(1), 41-48. https://doi.org/10.1016/j.jppr.2017.01.001
  32. Shabana, Y.M., Noda, N. and Tohgo, K. (2000), "Elasto-plastic thermal stresses in functionally graded materials considering microstructure effects", In: Current Advances in Mechanical Design and Production VII, pp. 223-231.
  33. Shahba, A., Attarnejad, R. and Zarrinzadeh, H. (2013), "Free vibration analysis of centrifugally stiffened tapered functionally graded beams", Mech. Adv. Mater. Struct., 20(5), 331-338. https://doi.org/10.1080/15376494.2011.627634
  34. Tang, A.Y., Wu, J.X., Li, X.F. and Lee, K.Y. (2014), "Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams", Int. J. Mech. Sci., 89, 1-11. https://doi.org/10.1016/j.ijmecsci.2014. 08.017
  35. Vatanabe, S.L., Rubio, W.M. and Silva, E.C.N. (2014), "Modeling of Functionally Graded Materials, Materials Modeling and Characterization", In: Comprehensive Materials Processing, pp. 261-282.
  36. Younsi, A., Tounsi, A, Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S.R. (2018), "Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates", Geomech. Eng., Int. J., 14(6), 519-532. https://doi.org/10.12989/gae.2018.14.6.519
  37. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb. 2018.09.051