DOI QR코드

DOI QR Code

The Cross-validation of Satellite OMI and OMPS Total Ozone with Pandora Measurement

지상 Pandora와 위성 OMI와 OMPS 오존관측 자료의 상호검증 방법에 대한 분석 연구

  • Baek, Kanghyun (Research Center for Climate Sciences, Pusan National University) ;
  • Kim, Jae-Hwan (Department of Atmospheric Science, Pusan National University) ;
  • Kim, Jhoon (Department of Atmospheric Science, Yonsei University)
  • 백강현 (부산대학교 기후과학연구소) ;
  • 김재환 (부산대학교 대기과학과) ;
  • 김준 (연세대학교 대기과학과)
  • Received : 2020.05.19
  • Accepted : 2020.06.17
  • Published : 2020.06.30

Abstract

Korea launched Geostationary Environmental Monitoring Satellite (GEMS), a UV/visible spectrometer that measure pollution gases on 18 February 2020. Because satellite retrieval is an ill-posed inverse solving process, the validation with ground-based measurements or other satellite measurements is essential to obtain reliable products. For this purpose, satellite-based OMI and OMPS total column ozone (TCO), and ground-based Pandora TCO in Busan and Seoul were selected for future GEMS validation. First of all, the goal of this study is to validate the ground ozone data using characteristics that satellite data provide coherent ozone measurements on a global basis, although satellite data have a larger error than the ground-based measurements. In the cross validation between Pandora and OMI TCO, we have found abnormal deviation in ozone time series from Pandora #29 observed in Seoul. This shows that it is possible to perform inverse validation of ground data using satellite data. Then OMPS TCO was compared with verified Pandora TCO. Both data shows a correlation coefficient of 0.97, an RMSE of less than 2 DU and the OMPS-Pandora relative mean difference of >4%. The result also shows the OMPS-Pandora relative mean difference with SZA, TCO, cross-track position and season have insignificant dependence on those variables.In addition, we showed that appropriate thresholds depending on the spatial resolution of each satellite sensor are required to eliminate the impact of the cloud on Pandora TCO.

Keywords

References

  1. Anton, M., M. Lopez, J. Vilaplana, M. Kroon, R. McPeters, M. Banon, and A. Serrano, 2009. Validation of OMI-TOMS and OMI-DOAS total ozone column using five Brewer spectroradiometers at the Iberian peninsula, Journal of Geophysical Research: Atmospheres, 114(D14).
  2. Baek, K., J. H. Kim, J. R. Herman, D. P. Haffner, and J. Kim, 2017. Validation of Brewer and Pandora measurements using OMI total ozone, Atmospheric Environment, 160: 165-175. https://doi.org/10.1016/j.atmosenv.2017.03.034
  3. Bak, J., J.H. Kim, X. Liu, K. Chance, and J. Kim, 2013. Evaluation of ozone profile and tropospheric ozone retrievals from GEMS and OMI spectra, Atmospheric Measurement Techniques, 6(2): 239-249. https://doi.org/10.5194/amt-6-239-2013
  4. Balis, D., M. Kroon, M. Koukouli, E. Brinksma, G. Labow, J. Veefkind, and R. McPeters, 2007. Validation of Ozone Monitoring Instrument total ozone column measurements using Brewer and Dobson spectrophotometer ground-based observations, Journal of Geophysical Research: Atmospheres, 112(D24).
  5. Bass, A. M. and R. J. Paur, 1985. The ultraviolet crosssections of ozone: I. the measurements, In: Zerefos, C.S., Ghazi, A. (eds), Atmospheric Ozone, Springer, Dordrecht, Netherlands, pp. 606-610.
  6. Bhartia, P. K. and C. Wellemeyer, 2002. TOMS-V8 total $O_3$ algorithm, OMI Algorithm Theoretical Basis Document, 2: 15-31.
  7. Bojkov, R. D., C. L. Mateer, and A. L. Hansson, 1988. Comparison of ground-based and total ozone mapping spectrometer measurements used in assessing the performance of the global ozone observing system, Journal of Geophysical Research: Atmospheres, 93(D8): 9525-9533. https://doi.org/10.1029/JD093iD08p09525
  8. Brion, J., A. Chakir, D. Daumont, J. Malicet, and C. Parisse, 1993. High-resolution laboratory absorption cross section of $O_3$, Temperature effect, Chemical Physics Letters, 213(5-6): 610-612. https://doi.org/10.1016/0009-2614(93)89169-I
  9. Crutzen, P. J., 1979. The role of NO and $NO_2$ in the chemistry of the troposphere and stratosphere, Annual Review of Earth and Planetary Sciences, 7(1): 443-472. https://doi.org/10.1146/annurev.ea.07.050179.002303
  10. Fioletov, V., G. Labow, R. Evans, E. Hare, U. Kohler, C. McElroy, K. Miyagawa, A. Redondas, V. Savastiouk, and A. Shalamyansky, 2008. Performance of the ground-based total ozone network assessed using satellite data, Journal of Geophysical Research: Atmospheres, 113(D14).
  11. Flynn, L., C. Long, X. Wu, R. Evans, C. Beck, I. Petropavlovskikh, G. McConville, W. Yu, Z. Zhang, and J. Niu, 2014. Performance of the ozone mapping and profiler suite (OMPS) products, Journal of Geophysical Research: Atmospheres, 119(10): 6181-6195. https://doi.org/10.1002/2013JD020467
  12. Herman, J., A. Cede, E. Spinei, G. Mount, M. Tzortziou, and N. Abuhassan, 2009. $NO_2$ column amounts from ground-based Pandora and MFDOAS spectrometers using the direct-Sun DOAS technique: Intercomparisons and application to OMI validation, Journal of Geophysical Research: Atmospheres, 114(D13).
  13. Herman, J., R. Evans, A. Cede, N. Abuhassan, I. Petropavlovskikh, and G. McConville, 2015. Comparison of ozone retrievals from the Pandora spectrometer system and Dobson spectrophotometer in Boulder, Colorado, Atmospheric Measurement Techniques, 8: 3407-3418. https://doi.org/10.5194/amt-8-3407-2015
  14. Herman, J., E. Spinei, A. Fried, J. Kim, J. Kim, W. Kim, A. Cede, N. Abuhassan, and M. Segal-Rozenhaimer, 2018. $NO_2$ and HCHO measurements in Korea from 2012 to 2016 from Pandora spectrometer instruments compared with OMI retrievals and with aircraft measurements during the KORUSAQ campaign, Atmospheric Measurement Techniques, 11(8): 4583-4603. https://doi.org/10.5194/amt-11-4583-2018
  15. Kim, J., U. Jeong, M. Ahn, J. H. Kim, R. J. Park, H. Lee, C. H. Song, Y. Choi, K. Lee, and J. Yoo, 2020. New era of air quality monitoring from space: Geostationary Environment Monitoring Spectrometer (GEMS), Bulletin of the American Meteorological Society, 101(1): E1-E22. https://doi.org/10.1175/BAMS-D-18-0013.1
  16. Levelt, P. F., G. H. J. van den Oord, M. R. Dobber, A. Malkki, H. Visser, J. de Vries, P. Stammes, J. O. Lundell, and H. Saari, 2006. The ozone monitoring instrument, IEEE Transactions on Geoscience Remote Sensing Letters, 44: 1093-1101. https://doi.org/10.1109/TGRS.2006.872333
  17. Liu, X., P. Bhartia, K. Chance, R. Spurr, and T. Kurosu, 2010. Ozone profile retrievals from the Ozone Monitoring Instrument, Atmospheric Chemistry and Physics, 10(5): 2521-2537. https://doi.org/10.5194/acp-10-2521-2010
  18. McPeters, R., M. Kroon, G. Labow, E. Brinksma, D. Balis, I. Petropavlovskikh, J. P. Veefkind, P. Bhartia, and P. Levelt, 2008. Validation of the AURA Ozone Monitoring Instrument total column ozone product, Journal of Geophysical Research: Atmospheres, 113(D15).
  19. McPeters, R., S. Frith, and G. Labow, 2015. OMI total column ozone: extending the long-term data record, Atmospheric Measurement Techniques, 8(11): 4845-4850. https://doi.org/10.5194/amt-8-4845-2015
  20. Natraj, V., X. Liu, S. Kulawik, K. Chance, R. Chatfield, D. P. Edwards, A. Eldering, G. Francis, T. Kurosu, and K. Pickering, 2011. Multi-spectral sensitivity studies for the retrieval of tropospheric and lowermost tropospheric ozone from simulated clear-sky GEO-CAPE measurements, Atmospheric Environment, 45(39): 7151-7165. https://doi.org/10.1016/j.atmosenv.2011.09.014
  21. Park, J., H. Lee, J. Kim, J. Herman, W. Kim, H. Hong, W. Choi, J. Yang, and D. Kim, 2018. Retrieval Accuracy of HCHO Vertical Column Density from Ground-Based Direct-Sun Measurement and First HCHO Column Measurement Using Pandora, Remote Sensing, 10(2): 173. https://doi.org/10.3390/rs10020173
  22. Platt, U., D. Perner, and H. Patz, 1979. Simultaneous measurement of atmospheric $CH_2O$, $O_3$, and $NO_2$ by differential optical absorption, Journal of Geophysical Research: Oceans, 84(C10): 6329-6335. https://doi.org/10.1029/JC084iC10p06329
  23. Platt, U., 1994. Differential optical absorption spectroscopy (DOAS), Air Monitoring by Spectroscopic Techniques, 127: 27-76.
  24. Reed, A. J., A. M. Thompson, D. E. Kollonige, D. K. Martins, M. A. Tzortziou, J. R. Herman, T. A. Berkoff, N. K. Abuhassan, and A. Cede, 2013. Effects of local meteorology and aerosols on ozone and nitrogen dioxide retrievals from OMI and pandora spectrometers in Maryland, USA during DISCOVER-AQ 2011, Journal of Atmospheric Chemistry, 72(3-4): 455-482.
  25. Seftor, C., G. Jaross, M. Kowitt, M. Haken, J. Li, and L. Flynn, 2014. Postlaunch performance of the Suomi National Polar-orbiting Partnership Ozone Mapping and Profiler Suite (OMPS) nadir sensors, Journal of Geophysical Research: Atmospheres, 119(7): 4413-4428. https://doi.org/10.1002/2013JD020472
  26. Thornton, J., P. Wooldridge, R. Cohen, M. Martinez, H. Harder, W. H. Brune, E. Williams, J. Roberts, F. Fehsenfeld, and S. Hall, 2002. Ozone production rates as a function of NOx abundances and HOx production rates in the Nashville urban plume, Journal of Geophysical Research: Atmospheres, 107(D12): ACH 7-1-ACH 7-17.
  27. Tzortziou, M., J. R. Herman, A. Cede, and N. Abuhassan, 2012. High precision, absolute total column ozone measurements from the Pandora spectrometer system: Comparisons with data from a Brewer double monochromator and Aura OMI, Journal of Geophysical Research: Atmospheres, 117(D16).
  28. Veefkind, J. P., J. F. de Haan, E. J. Brinksma, M. Kroon, and P. F. Levelt, 2006. Total ozone from the Ozone Monitoring Instrument (OMI) using the DOAS technique, IEEE Transactions on Geoscience Remote Sensing Letters, 44(5): 1239-1244. https://doi.org/10.1109/TGRS.2006.871204