DOI QR코드

DOI QR Code

NELL2 Function in Axon Development of Hippocampal Neurons

  • Kim, Han Rae (Department of Biological Sciences, College of Natural Sciences, University of Ulsan) ;
  • Kim, Dong Hee (Department of Biological Sciences, College of Natural Sciences, University of Ulsan) ;
  • An, Ji Young (Department of Biological Sciences, College of Natural Sciences, University of Ulsan) ;
  • Kang, Dasol (Department of Biological Sciences, College of Natural Sciences, University of Ulsan) ;
  • Park, Jeong Woo (Department of Biological Sciences, College of Natural Sciences, University of Ulsan) ;
  • Hwang, Eun Mi (Center for Functional Connectomics, Korea Institute of Science and Technology (KIST)) ;
  • Seo, Eun Jin (Department of Oral Biochemistry, Dental and Life Science Institute, Pusan National University School of Dentistry) ;
  • Jang, Il Ho (Department of Oral Biochemistry, Dental and Life Science Institute, Pusan National University School of Dentistry) ;
  • Ha, Chang Man (Research Division and Brain Research Core Facilities of Korea Brain Research Institute) ;
  • Lee, Byung Ju (Department of Biological Sciences, College of Natural Sciences, University of Ulsan)
  • Received : 2020.01.29
  • Accepted : 2020.05.24
  • Published : 2020.06.30

Abstract

Neurons have multiple dendrites and single axon. This neuronal polarity is gradually established during early processes of neuronal differentiation: generation of multiple neurites (stages 1-2); differentiation (stage 3) and maturation (stages 4-5) of an axon and dendrites. In this study, we demonstrated that the neuron-specific n-glycosylated protein NELL2 is important for neuronal polarization and axon growth using cultured rat embryonic hippocampal neurons. Endogenous NELL2 expression was gradually increased in parallel with the progression of developmental stages of hippocampal neurons, and overexpression of NELL2 stimulated neuronal polarization and axon growth. In line with these results, knockdown of NELL2 expression resulted in deterioration of neuronal development, including inhibition of neuronal development progression, decreased axon growth and increased axon branching. Inhibitor against extracellular signal-regulated kinase (ERK) dramatically inhibited NELL2-induced progression of neuronal development and axon growth. These results suggest that NELL2 is an important regulator for the morphological development for neuronal polarization and axon growth.

Keywords

References

  1. Acebes, A. and Ferrús, A. (2000). Cellular and molecular features of axon collaterals and dendrites. Trends Neurosci. 23, 557-565. https://doi.org/10.1016/S0166-2236(00)01646-5
  2. Barnes, A.P. and Polleux, F. (2009). Establishment of axon-dendrite polarity in developing neurons. Annu. Rev. Neurosci. 32, 347-381. https://doi.org/10.1146/annurev.neuro.31.060407.125536
  3. Chao, M.V. (2003). Neurotrophins and their receptors: a convergence point for many signaling pathways. Nat. Rev. Neurosci. 4, 299-309. https://doi.org/10.1038/nrn1078
  4. Cheng, P.L., Song, A.H., Wong, Y.H., Wang, S., Zhang, X., and Poo, M.M. (2011). Self-amplifying autocrine actions of BDNF in axon development. Proc. Natl. Acad. Sci. U. S. A. 108, 18430-18435. https://doi.org/10.1073/pnas.1115907108
  5. Choi, E.J., Kim, D.H., Kim, J.G., Kim, D.Y., Kim, J.D., Seol, O.J., Jeong, C.S., Park, J.W., Choi, M.Y., Kang, S.G., et al. (2010). Estrogen-dependent transcription of the NEL-like 2 (NELL2) gene and its role in protection from cell death. J. Biol. Chem. 285, 25074-25084.
  6. Craig, A.M. and Banker, G. (1994). Neuronal polarity. Annu. Rev. Neurosci. 17, 267-310. https://doi.org/10.1146/annurev.ne.17.030194.001411
  7. Diaz-Hernandez, M., del Puerto, A., Diaz-Hernandez, J.I., Diez-Zaera, M., Lucas, J.J., Garrido, J.J., and Miras-Portugal, M.T. (2006). Inhibition of the ATP-gated P2X7 receptor promotes axonal growth and branching in cultured hippocampal neurons. J. Cell Sci. 15, 3717-3728.
  8. Dotti, C.G., Sullivan, C.A., and Banker, G.A. (1988). The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454-1468. https://doi.org/10.1523/JNEUROSCI.08-04-01454.1988
  9. Goslin, K. and Banker, G. (1989). Experimental observations on the development of polarity by hippocampal neurons in culture. J. Cell Biol. 108, 1507-1516. https://doi.org/10.1083/jcb.108.4.1507
  10. Huang, E.J. and Reichardt, L.F. (2001). Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677-736. https://doi.org/10.1146/annurev.neuro.24.1.677
  11. Hwang, E.M., Kim, D.G., Lee, B.J., Choi, J., Kim, E., Park, N., Kang, D., Han, J., Choi, W.S., Hong, S.G., et al. (2007). Alternative splicing generates a novel non-secretable cytosolicisoform of NELL2. Biochem. Biophys. Res. Commun. 353, 805-811. https://doi.org/10.1016/j.bbrc.2006.12.115
  12. Jaworski, A., Tom, I., Tong, R.K., Gildea, H.K., Koch, A.W., Gonzalez, L.C., and Tessier-Lavigne, M. (2015). Operational redundancy in axon guidance through the multifunctional receptor Robo3 and its ligand NELL2. Science 350, 961-965. https://doi.org/10.1126/science.aad2615
  13. Jeong, J.K., Kim, H.R., Hwang, S.M., Park, J.W., and Lee, B.J. (2008). Regionand neuronal phenotype specific expression of NELL2 in the adult rat brain. Mol. Cells 26, 186-192.
  14. Jin, S., Kim, J.G., Park, J.W., Koch, M., Horvath, T.L., and Lee, B.J. (2016). Hypothalamic TLR2 triggers sickness behavior via a microglia-neuronal axis. Sci. Rep. 6, 29424. https://doi.org/10.1038/srep29424
  15. Kalil, K. and Dent, E.W. (2014). Branch management: mechanisms of axon branching in the developing vertebrate CNS. Nat. Rev. Neurosci. 15, 7-18. https://doi.org/10.1038/nrn3650
  16. Kim, D.H., Kim, H.R., Choi, E.J., Kim, D.Y., Kim, K.K., Kim, B.S., Park, J.W., and Lee, B.J. (2014). Neural epidermal growth factor-like like protein 2 (NELL2) promotes aggregation of embryonic carcinoma P19 cells by inducing N-cadherin expression. PLoS One 9, e85898. https://doi.org/10.1371/journal.pone.0085898
  17. Kim, H., Ha, C.M., Choi, J., Choi, E.J., Jeon, J., Kim, C., Park, S.K., Kang, S.S., Kim, K., and Lee, B.J. (2002). Ontogeny and the possible function of a novel epidermal growth factor-like repeat domain containing protein, NELL2, in the rat brain. J. Neurochem. 83, 1389-1400. https://doi.org/10.1046/j.1471-4159.2002.01245.x
  18. Kim, Y.E. and Baek, S.T. (2019). Neurodevelopmental Aspects of RASopathies. Mol. Cells 42, 441-447. https://doi.org/10.14348/molcells.2019.0037
  19. Ma, X., Zhou, Y., Chai, Y., Wang, X., and Huang, X. (2017). Stat3 controls maturation and terminal differentiation in mouse hippocampal neurons. J. Mol. Neurosci. 61, 88-95. https://doi.org/10.1007/s12031-016-0820-x
  20. Matsuhashi, S., Noji, S., Koyama, E., Myokai, F., Ohuchi, H., Taniguchi, S., and Hori, K. (1995). New gene, nel, encoding a Mr 93 K protein with EGFlike repeats is strong expressed in neural tissues of early stage chick embryos. Dev. Dyn. 203, 212-222. https://doi.org/10.1002/aja.1002030209
  21. Matsuyama, S., Aihara, K., Nishino, N., Takeda, S., Tanizawa, K., Kuroda, S., and Horie, M. (2004). Enhanced long-term potentiation in vivo in dentate gyrus of NELL2-deficient mice. Neuroreport 15, 417-420. https://doi.org/10.1097/00001756-200403010-00007
  22. Matsuyama, S., Doe, N., Kurihara, N., Tanizawa, K., Kuroda, S., Iso, H., and Horie, M. (2005). Spatial learning of mice lacking a neuron-specific epidermal growth factor family protein, NELL2. J. Pharmacol. Sci. 98, 239-243. https://doi.org/10.1254/jphs.FP0050211
  23. Nelson, B.R., Claes, K., Todd, V., Chaverra, M., and Lefcort, F. (2004). NELL2 promotes motor and sensory neuron differentiation and stimulates mitogenesis in DRG in vivo. Dev. Biol. 270, 322-335. https://doi.org/10.1016/j.ydbio.2004.03.004
  24. Nix, P., Hisamoto, N., Matsumoto, K., and Bastiani, M. (2011). Axon regeneration requires coordinate activation of p38 and JNK MAPK pathways. Proc. Natl. Acad. Sci. U. S. A. 28, 10738-10743.
  25. Oyasu, M., Kuroda, S., Nakashita, M., Fujimiya, M., Kikkawa, U., and Saito, N. (2000). Immunocytochemical localization of a neuron-specific thrombospondin-1-like protein, NELL2: light and electron microscopic studies in the rat brain. Brain Res. Mol. Brain Res. 76, 151-160. https://doi.org/10.1016/S0169-328X(99)00342-3
  26. Park, H. and Poo, M.M. (2013). Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 14, 7-23. https://doi.org/10.1038/nrn3379
  27. Perron, J.C. and Bixby, J.L. (1999). Distinct neurite outgrowth signaling pathways converge on ERK activation. Mol. Cell Neurosci. 13, 362-378. https://doi.org/10.1006/mcne.1999.0753
  28. Rao, Z., Handford, P., Mayhew, M., Knott, V., Brownlee, G.G., and Stuart, D. (1995). The structure of a $Ca^{2+}$-binding epidermal growth factor-like domain: its role in protein-protein interactions. Cell 82, 131-141. https://doi.org/10.1016/0092-8674(95)90059-4
  29. Seiradake, E., Jones, E.Y., and Klein, R. (2016). Structural perspectives on axon guidance. Annu. Rev. Cell Dev. Biol. 32, 577-608. https://doi.org/10.1146/annurev-cellbio-111315-125008
  30. Shi, S.H., Jan, L.Y., and Jan, Y.N. (2003). Hippocampal neuronal polarity specified by spatially localized mPar3/mPar6 and PI 3-kinase activity. Cell 112, 63-75. https://doi.org/10.1016/S0092-8674(02)01249-7
  31. Yamamoto, N., Kashiwagi, M., Ishihara, M., Kojima, T., Maturana, A.D., Kuroda, S., and Niimi, T. (2019). Robo2 contains a cryptic binding site for neural EGFL-like (NELL) protein 1/2. J. Biol. Chem. 294, 4693-4703. https://doi.org/10.1074/jbc.RA118.005819
  32. Yan, D., Guo, L., and Wang, Y. (2006). Requirement of dendritic Akt degradation by the ubiquitin-proteasome system for neuronal polarity. J. Cell Biol. 174, 415-424. https://doi.org/10.1083/jcb.200511028
  33. Ypsilanti, A.R., Zagar, Y., and Chedotal, A. (2010). Moving away from the midline: new developments for Slit and Robo. Development 137, 1939-1952.