Development of An Eco-friendly Surface Treatment Process for the Design of the Al Lead Tab in Lithium-ion Batteries

  • Received : 2020.02.18
  • Accepted : 2020.03.02
  • Published : 2020.06.20


With the recent popularity of mobile devices, the demand for lithium-ion batteries is increasing. In this study, the surface treatment process for the development of the Al (aluminum) lead tab for positive electrode, a key component of the pouch-type lithium-ion battery, was investigated. Anodizing and sealing processes were tested as surface treatment techniques. It was found that only a sealing process is needed to obtain sufficient adhesive strength. In the present study, an adhesive strength of 17 N/12 mm was achieved by degreasing and etching pretreatment, followed by a sealing process of 10 min duration. This adhesive strength was greater than that achievable using Cr (chromium) surface treatment. Using various surface analysis techniques, the shape and composition of the surface before and after being subjected to the surface treatment were compared and analyzed. The results of this study are expected to contribute to the development of an eco-friendly lead tab.



  1. Xu, J.; Thomas, H. R.; Francis, R. W.; Lum, K. R.; Wang, J.; Liang, B., J. Power Sources 2008, 177, 512.
  2. Georgi-Maschler, T.; Friedrich, B.; Weyhe, R.; Heegn, H.; Rutz, M., J. Power Sources 2012, 207, 173.
  3. Barre, A.; Deguilhem, B.; Grolleau, S.; Gerard, M.; Suard, F.; Riu, D., J. Power Sources 2013, 241, 680.
  4. Schroder, R.; Aydemir, M.; Seliger, G.Procedia Manuf. 2017, 8, 104.
  5. Samba, A.; Omar, N.; Gualous, H.; Capron, O.; Van den Bossche, P.; Van Mierlo, J., Electrochim. Acta 2014, 147, 319.
  6. Zhao, W.; Luo, G.; Wang, C.-Y., J. Power Sources 2014, 257, 70.
  7. Hagans, P. L.; Haas, C. M. In Surface Engineering; Cotell, C. M., Sprague, J. A., Smidt, F. A., Jr., Eds.; ASM International, 1994; Vol. 5, p 405.
  8. Kim, S.; Lee, C., J. Korean Ind. Eng. Chem. 2006, 17, 433.
  9. Kikuchi, T.; Nakajima, D.; Nishinaga, O.; Natsui, S.; Suzuki, R., Curr. Nanosci. 2015, 11, 560.
  10. Choi, J.; Lee, J.; Lim, H.; Kim, S., J. Korean Ind. Eng. Chem 2008, 19, 249.
  11. Hao, L.; Cheng, B. R., Met. finish. 2000, 98, 8.
  12. Park, J. In Anticorrosion & metal finishing; 3rd ed.; Sejinsa: Seoul, 2013, p 449.
  13. Jing, G.; Chen, T.; Luan, M., Arab. J. Chem. 2016, 9, S457.
  14. Eom, S.; Park, S.; Kim, Y.; Kim, Y.; Shul, Y., J. Electrochem. Soc. 2009, 12, 47.
  15. Stepniowski, W. J.; Norek, M.; Michalska-Domanska, M.; Bojar, Z., Mater. Lett. 2013, 111, 20.
  16. Saceleanu, F.; Vuong, T. V.; Master, E. R.; Wen, J. Z., Int. J. Energy Res. 2019, 43, 7384.
  17. Lee, J., J. Korean Inst. Surf. Eng. 2018, 51, 11.
  18. Chubar, N.; Gerda, V.; Miuk, M.; Omastova, M.; Heister, K.; Man, P.; Yablokova, G.; Banerjee, D.; Fraissard, J., Acta Phys. Pol. A 2018, 133, 1091.
  19. Crist, B. In PDF Handbook of Monochromatic XPS of Commercially Pure Binary Oxides; Crist, B. V., Ed.; XPS International LLC, 2018; Vol. 2, p 43.