Development of Uneven Excavation Method for Reinforcement of Ground Slope

사면보강을 위한 요철형 암반굴착 공법개발

  • Kim, Hyun-Gi (Department of Energy Plant Engineering, Catholic Kwandong University)
  • 김현기 (가톨릭관동대학교 에너지플랜트공학과)
  • Received : 2020.06.29
  • Accepted : 2020.10.05
  • Published : 2020.10.31


In this study, required drill bits and excavation methods were developed for an uneven drilling method that can solve the problem of performance degradation of rock bolts. The developed drill bit's excavation performance was verified using rock with a strength of 100 MPa or more. In addition, for the relative evaluation of the uneven excavation method, experimental specimens were prepared for models with and without irregularities, and tests were performed. As a result of the experiment, the model with unevenness exhibited an average critical draw resistance of 801.6 kN, which is about 1.7 times the value of 468.7 kN for the model without unevenness, thus confirming the effect sufficiently. Therefore, it is expected that the resistance performance will significantly increase despite an increase in the uneven hole diameter of 20 mm. In the future, the results of this study could be used as basic data when performing other studies using numerical analysis models and performance verification through experiments to obtain an optimized rock forming method.

사면안정공법 중 락볼트 공법은 터널이나 흙막이공법에도 널리 적용되는 공법이나 불안정한 지반을 보강하기 위한 축력이 시간이 경과됨에 따라 감소되고 천공된 원지반과 충진재 사이의 강도가 현저히 줄어들어 내구성이 떨어지거나 설계 성능을 발현하지 못하는 문제가 발생하고 있다. 본 연구는 성능저하 문제를 해결할 수 있는 요철형 굴착공법 개발을 목표로 드릴링 장비의 개발 및 적용성 평가를 수행하였다. 개발된 드릴비트의 성능평가를 위해 100MPa이상의 암석을 확공굴착 하여 검증하였고, 요철형성 효과에 대한 평가를 위해 요철유무에 따른 실험체를 제작하여 성능실험 및 평가를 수행하였다. 실험결과 요철이 형성된 모델은 요철이 없는 모델의 인발저항 임계하중인 468.7kN의 약 1.7배로 평균값 801.6kN을 나타내어 그 효과를 충분히 확인하였다. 암석과 그라우트 접촉면이 파괴되기 전 암석의 취성으로 인해 실험체가 먼저 파괴되어 요철형성 모델의 임계하중 측정은 불가능 했으나, 암석 파괴하중 도달 전 그라우트 충진부의 슬립이 전혀 발생하지 않았고, 암석파괴시의 하중이 요철이 없는 모델의 임계하중을 충분히 넘어선 점을 감안하면 요철 확공직경이 20mm 증가했음에도 불구하고 저항능력이 획기적으로 늘어날 것으로 기대된다. 향후 최적 요철형성 락볼트 공법개발을 위한 수치해석 모델개발 및 변수연구와 추가 실험에 본 연구의 결과가 기초자료로 활용될 수 있을 것으로 판단된다.



  1. J. G. Han, K. K. Hong, J. Y. Lee, S. K. Jung, "Application Evaluation of Countermeasure Method using Analysis of Failure Causes for Reinforced Slope," Journal of the Korean Geosynthetics Society, Vol.10, No.1, pp.9-18, 2011. DOI:
  2. D. S. Kim, J. Y. KIM, S. M. Lee, G. N. Kim, J. Y. Jeong, Y. G. Gang, "A Study on the Construction of Major Bolt (Lock Bolts) in Consideration of Safety and Environment," Construction Engineering and Management, Vol.15, No.5, pp.36-40, 2014.
  3. D. Y. Jeong, A Study on Safety Management of Earth Retaining Structure in the Downtown, Master's thesis, Department of Civil Engineering, Pusan National University, 2017.
  4. W. Zhang, L. Huang, C. H. Juang, "An analytical model for estimating the force and displacement of fully grouted rock bolts," Computers and Geotechnics, Vol.117, 103222, 2020. DOI:
  5. Y. S. Hwang, S. D. Lee, "Resisting Behavior of Fully-Grouted Rock Bolts with Compressible Spacers", Journal of Korean Society for Rock Mechanics, Vol.21, No.5, pp.377-385, 2011. DOI:
  6. C. C. Li, "Principles of rockbolting design", Journal of Rock Mechanics and Geotechnical Engineering, Vol.9, No.3, pp.396-414, 2017. DOI:
  7. C. C. Li, Rockbolting: principles and applications, p.284, Butterworth-Heinemann, United Kingdom, 2017.
  8. Z. Tao, J. X. Chen, "Behaviour of rock bolting as tunneling support", Proceedings of the International Symposium on Rock Bolting, Rotterdam, Balkema, pp.87-92, 1984.
  9. R. D. Reichert, W. F. Bawden, A. J. Hyett Z. Tao, J. X. Chen, "Evaluation of Design bolt bond strength for fully grouted bolt", 93rd Annual Meeting of Vancouver, pp.1024-1032, 1991.
  10. M. Choi, S. Seo, "Study on the Anchor Bearing Plate of a Composite Material (SMC+ FRP) Sandwich Panel Structure," Journal of the Korean Society of Hazard Mitigation, Vol.19, No.7, pp.359-366, 2019. DOI:
  11. C. H. Song, K. B. Kwon, D. Y. Shin, W. K. Hwang, J. H. Lim, J. W. Cho, "Trend analysis of drilling technology for top-hammer drilling machine", Tunnel and Underground Space, Vol.23, No.4, pp.271-279, 2013. DOI:
  12. A. Copco, surface Drilling in Quarry and Construction, 2006.
  13. K. B. Kwon, C. H. Song, J. Y. Park, D. Y. Shin, J. W. Cho, S. H. Cho K. B. Kwon, D. Y. Shin, W. K. Hwang, J. H. Lim, J. W. Cho, "Rock fragmentation assessment of a drill bit by Hopkinson bar percussion test", Tunnel and Underground Space, Vol.23, No1, pp.42-53, 2013. DOI:
  14. C. M. Kwon, G. G. Lee, G. H. Ha, "Carbothermal Reduction of Oxide of WC/Co Hardmetal Scrap", Korean Journal of Metals and Meterials, Vol.54, No10, pp.743-751, 2016. DOI:
  15. Asia Carbide Co., Special Hardmetals, Asialoy, c2015, Available From: (accessed Aug. 27, 2020)
  16. ISRM, "Basic geotechnical description of rock masses," International Journal of Rock Mechanic and Mining Sciences and Geomechanics Abstracts, Vol.18, pp.85-110, 1981.
  17. KS F 2405, "Standard test method for compressive strength concrete", Korean Agency for Technology and Standards (KS), Seoul, Korea, 2017.