Analysis of Misconceptions on Oceanic Front and Fishing Ground in Secondary-School Science and Earth Science Textbooks

중등학교 과학 및 지구과학 교과서 조경 수역 및 어장에 관한 오개념 분석

  • Park, Kyung-Ae (Department of Earth Science Education, Seoul National University) ;
  • Lee, Jae Yon (Chungdam Middle School) ;
  • Kang, Chang-Keun (School of Earth Sciences & Environmental Engineering, Gwangju Institute of Science and Technology) ;
  • Kim, Chang-Sin (Fisheries Resource Management Division, National Institute of Fisheries Science)
  • 박경애 (서울대학교 지구과학교육과) ;
  • 이재연 (청담중학교) ;
  • 강창근 (광주과학기술원) ;
  • 김창신 (국립수산과학원)
  • Received : 2020.10.16
  • Accepted : 2020.10.26
  • Published : 2020.10.31


Oceanic fronts, which are areas where sea water with different properties meet in the ocean, play an important role in controlling weather and climate change through air-sea interactions and marine dynamics such as heat and momentum exchange and processes by which properties of sea water are mixed. Such oceanic fronts have long been described in secondary school textbooks with the term 'Jokyung water zone (JWC hereafter) or oceanic front', meaning areas where the different currents met, and were related to fishing grounds in the East Sea. However, higher education materials and marine scientists have not used this term for the past few decades; therefore, the appropriateness of the term needs to be analyzed to remove any misconceptions presented. This study analyzed 11 secondary school textbooks (5 middle school textbooks and 6 high school textbooks) based on the revised 2015 curriculum. A survey of 30 secondary school science teachers was also conducted to analyze their awareness of the problems. An analysis of the textbook contents related to the JWC and fishing grounds found several errors and misconceptions that did not correspond with scientific facts. Although the textbooks mainly uses the concept of the JWC to represent the meeting of cold and warm currents, it would be reasonable to replace it with the more comprehensive term 'oceanic front', which would indicate an area where different properties of sea water-such as its temperature, salinity, density, and velocity-interact. In the textbooks, seasonal changes in the fishing grounds are linked to seasonal changes in the North Korean Cold Current (NKCC), which moves southwards in winter and northwards in summer; this is the complete opposite of previous scientific knowledge, which describes it strengthening in summer. Fishing grounds are not limited to narrow coastal zones; they are widespread throughout the East Sea. The results of the survey of teachers demonstrated that this misconception has persisted for decades. This study emphasized the importance of using scientific knowledge to correct misconceptions related to the JWC, fishing grounds, and the NKCC and addressed the importance of transferring procedures to the curriculum. It is expected that the conclusions of this study will have an important role on textbook revision and teacher education in the future.


  1. Cho, K.D., Kim, S.W., Kang G.H., Lee, C.I., Kim, D.S., Choi, Y.S., and Choi, K.H., 2004, Relationship between Fishing Condition of Common Squid and Oceanic Condition in the East Sea. Journal of the Korean Society of Marine Environment and Safty, 10(1), 61-67.
  2. Choi, B.J., Haidvogel, D.B., and Cho, Y.K., 2009, Interannual variation of the Polar Front in the Japan/ East Sea from summertime hydrography and sea level data. Journal of Marine Systems, 78, 351-362.
  3. Choi, K.H. and Kim, S.J., 1996, The development of evaluating framework for a science textbook in a secondary school. Journal of the Korean Association for Science Education, 16(3), 303-313.
  4. Choi, S.I. and Cho, H.H., 1987, An analysis of misconceptions about the concepts of cell-division, reproduction and fertilization in high school biology textbook. Journal of the Korean Association for Science Education, 7, 19-31. (in Korean)
  5. Gong, Y. and Son, S.J., 1982, The study of the the study on the marine thermo-front in the East sea of Korea. Rep Nat Fish Res and Dep Inst 28, 24-25.
  6. Jo, M.J., Kim, J.J., Yang, J.H., Kim, C.S., and Kang, S.K., 2019, Changes in the ecological characteristics of Todarodes pacificus associated with long-term catch variations in jigging fishery, Korean Journal of Fisheries and Aquatic Sciences, 52(6), 685-695.
  7. Kim, H.R., Kim, S.H., Kim, M.S., Lee, Y.S., Hwang, S.Y., Lee, S.H., Noh, D.K., Lim, H., Bae, M.J., Lee, T.W., Kwon, O.S., Park, K.T., and Song, S.J., 2019, Middle school science 2. Doosan Dong-A, Seoul, Korea, 331 p. (in Korean)
  8. Kim, J.S., Lee, H.K., Kwon, O.S., Chang, S.K., Kwon, H.J., and Park, H.K, 2019, High school earth science I. YBM, Seoul, Korea, 240 p. (in Korean)
  9. Kim, K., Kim, K.-R., Min, D.H., Volkov, Y., Yoon, J.-H., and Takematsu, M., 2001, Warming and structural changes in East (Japan) Sea: a clue to future changes in global oceans. Geophysical Research Letters, 28, 3293-3296.
  10. Kim, S.J, Cho, Y.K., Choi, M.H., Kim, H.S., Chang, C.H., Kim, H.K., Kwon, H.S., Oh, H.S., Koo, H.M., Kang, H.J., Kim, D.J., Lee, J.W., Ryu, H.K., Moon, M.H., Lee, Y.J., and Yoo, M.I., 2019, Middle school science 2. Mirae-N, Seoul, Korea, 337 p. (in Korean)
  11. Kim, Y.H., and Min, H.S., 2008. Seasonal and interannual variability of the North Korean Cold Current in the East Sea reanalysis data. Ocean and Polar Research, 30(1), 21-31.
  12. Kim, Y.S. and Nam, M.M., 2003, Fish fauna in the East Sea. In: Son YM (ed.), Current and preservation of Korean fishes. Sym Kor Ichthyol Soc, 5-36.
  13. Kook, D.S., 2003, An Analysis of 10th grade science textbook as an origin of misconception on greenhouse effect concept. Journal of the Korean Association for Science Education, 23(5), 592-598. (in Korean)
  14. Kwon, S.M., Lee, H.N., Jin, M.S., Boo, Y.P., Kim, T.J., and Cho, Y.W., 2019, High school earth science I, Kumsung, Seoul, Korea, 248 p. (in Korean)
  15. Lee, J.W., Ryu, H.K., Chu, B.S., Moon, M.H., Lee, I.S., Seo, K.W., and Cho, M.A., 2019, High school earth science I, Mirae-N, Seoul, Korea, 247 p. (in Korean)
  16. Lee, K.Y., Kim, H.S., Park, J.Y., Lee, S.M., Jeong, J.H., and Choi, Y.O., 2019, High school earth science I, Visang Education, Seoul, Korea, 240 p. (in Korean)
  17. Lee, Y.J., Park, S.I., Lee, J.K., Chang, H.Y., Kim, Y.K., and Chang, Y.S., 2019, High school earth science I, Kyohak, Seoul, Korea, 304 p. (in Korean)
  18. Lim, T.H., Back, J.M., Nam, K.W., Kang, T.W., Kang, D.H., Lee, B.Y., Chang. H.S., Kim, M.K., Hwang, I.S., Lee, Y.C., Ko, H.D., and Shin, M.Y., 2019, Middle school science 2. Visang Education, Seoul, Korea, 342 p. (in Korean)
  19. Martin, S. and Kawase M., 1998, The southern flux of sea ice in the Tatarskiy Strait, Japan Sea and the generation of the Liman Current. J. Mar. Res., 56, 141-155.
  20. Noh, S.K., Lee, C.H., Kim, J.W., Park, Y.H., Kim, H.S., Lee, J.M., Bae, Y.J., Lee, B.R., Moon, T.J., Park, J.Y., Park, J.I., Kim, Y.K., and Lim, J.S., 2019, Middle school science 2. YBM, Seoul, Korea, 336 p. (in Korean)
  21. Noh, T.H., Lee, B.W., Kim, S.K., Chang, J.W., Kim, S.J., Lim, H.Y., Yang, C.H., Park, J.K., Min, J.S., Bae, Y.H., Oh, P.S., Kim, Y.K., and Park, C.Y., 2019, Middle school science 2. Chunjae Education, Seoul, Korea, 340 p. (in Korean)
  22. Oh, P.S., Cho, H.K., Oh, S.J., Lee, H.I., Moon, B.K., So, Y.W., Jeon, H.J., and Park, C.E., 2019, High school earth science I, Chunjae Education, Seoul, Korea, 222 p. (in Korean)
  23. Park, J.-E., Park, K.-A., Kang, C.-K., and Park, Y.J., 2020, Short-term response of chlorophyll-a concentration to change in sea surface wind field over mesoscale eddy. Estuaries and Coasts, 43(3), 646-660.
  24. Park, K.-A., Chung, J., and Kim, K., 2004, Sea surface temperature fronts in the East (Japan) Sea and temporal variations, Geophys. Res. Lett., 31, L07304.
  25. Park, K.-A., Ullman, D.S., Kim, K., Chung, J.Y., and Kim, K.R., 2007, Spatial and temporal variability of satellite-observed Subpolar Front in the East/Japan Sea. Deep-Sea research, 54, 453-470.
  26. Park, K.-A., Park, J.-E., Seo, K.S., Choi, B.J., and Byun, D.S., 2011, Analysis of oceanic current maps of the East Sea in the secondary school science textbooks. Journal of the Korean Earth Science Society, 32, 832-859. (in Korean)
  27. Park, K.-A., Park, J.-E., Choi, B. J., Byun, D.S., and Lee, E.I, 2013, An oceanic current map of the East Sea for science textbooks based on scientific knowledge acquired from oceanic measurements. Journal of the Korean Society of Oceanography, 18, 234-265 (in Korean)
  28. Park, K.-A., Lee, J.Y., Park, J.J., Lee, E.I., Byun, D.S., Kang, B.S., and Jeong, K.Y., 2020, Analysis of Integrated Oceanic Current Maps in Science and Earth Science Textbooks of Secondary School Based on 2015 Revised Curriculum. Journal of Korean Earth Education Science Society, 41(3), 248-260. (in Korean)
  29. Park, K.-A.,, Lee, J.-Y., Lee, E.-Y., Kim, Y.H., and Byun D.-S.. 2020, Analysis of Misconception on the North Korea Cold Current in Secondary-School Science and Earth Science Textbooks. Journal of the Korean Earth Science Society, 41(5), 490-503. (in Korean)
  30. Senjyu, T., 1999, The Japan Sea Intermediate Water; Its characteristics and circulation. Journal of Oceanography, 55, 111-122.
  31. Senjyu, T., Shin, H.R., Yoon, J.-H., Nagano, Z., An, H.-S., Byun S.-K., and Lee, C.-K., 2005, Deep flow field in the Japan/East Sea as deduced from direct current measurements. Deep-Sea Res., 52, 1726-1741.
  32. Song, J.W., and Na, J.Y., 2015, Directions and Issues of 2015 National Science Curriculum and their Implications to Science Classroom Culture. School Science Journal, 9, 7284. (in Korean)
  33. Talley, L.D., Min, D.H., Lobanov, V.B., Luchin, V.A., Ponomarev, V.I., Salyuk, A.N., Shcherbina, A.Y., Tishchenko, P.Y., and Zhabin, I., 2006, Japan/East Sea water masses and their relation to the Sea's circulation. Oceanography, 19, 32-49.
  34. Yashayaev, I.M., and Zveryaev, I.I., 2001, Climate of the seasonal cycle in the North Pacific and the North Atlantic oceans, International Journal of Climatology, 21, 401-417.
  35. Yoon, J. H. and Kawamura, H., 2002, The Formation and Circulation of the Intermediate Water in the Japan Sea. Journal of oceanography, 58, 197.211.