Design of nonlinear photonic crystal fibers with ultra-flattened zero dispersion for supercontinuum generation

  • Kumar, Pranaw (School of Electronics Engineering, Kalinga Institute of Industrial Technology) ;
  • Fiaboe, Kokou Firmin (School of Electronics Engineering, Kalinga Institute of Industrial Technology) ;
  • Roy, Jibendu Sekhar (School of Electronics Engineering, Kalinga Institute of Industrial Technology)
  • 투고 : 2019.02.13
  • 심사 : 2019.08.27
  • 발행 : 2020.04.03


The study reports on the design and performance of two air-filled and two partial ethanol-filled photonic crystal fiber (PCF) structures with a tetra core for supercontinuum generation. The PCFs are nonlinear with ultra-flattened zero dispersion. Holes with smaller areas are used to create a tetra-core PCF structure. Ethanol is filled in the holes of smaller area while the larger holes of cladding region are airfilled. Optical properties including dispersion, effective mode area, confinement loss, normalized frequency, and nonlinear coefficient of the designed PCF structures are investigated via full vector finite difference time domain (FDTD) method. A PCF structure with lead silicate as wafer exhibits significantly better results than a PCF structure with silica as wafer. However, both structures report dispersion at a telecommunication wavelength corresponding to 1.55 ㎛. Furthermore, the PCF structure with lead silicate as wafer exhibits a very high nonlinear coefficient corresponding to 1375 W-1 km-1 at the same wavelength. This scheme can be used for optical communication systems and in optical devices by exploiting the principle of nonlinearity.


  1. J. C. Knight et al., All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett. 21 (1996), 1547-1549.
  2. P. Kumar et al., Dodecagonal photonic crystal fibers with negative dispersion and low confinement loss, Optik 144 (2017), 363-369.
  3. O. Blanch et al., Highly birefringent photonic crystal fibres, Opt. Lett. 25 (2000), 1325-1327.
  4. X. Freng et al., Single-mode tellurite glass holey fibre with extremely large mode area for infrared nonlinear applications, Opt. Express 16 (2008), no. 18, 13651-13656.
  5. T. A. Birks, J. C. Knight, and P. S. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett. 22 (1997), 961-963.
  6. S. M. A. Razza and Y. Namihira, Proposal for highly nonlinear dispersion-flattened octagonal photonic crystal fibers, IEEE Photon. Technol. Lett. 20 (2008), 249-251.
  7. J. C. Knight and J. Russell, Applied optics: New ways to guide light, Sci. 296 (2002), 276-277.
  8. A. Medjouri et al., Design of a circular photonic crystal fiber with flattened chromatic dispersion using a defected core and selectively reduced air holes: Application to supercontinuum generation at 1.55${\mu}m$, Photon. Nanostruc. Funda. Appl. 16 (2015), 43-50.
  9. J. Wang et al., Properties of index guided PCF with air core, Opt. Laser Tech. 39 (2006), 317-321.
  10. J. C. Knight et al., Photonic band gap guidance in optical fibers, Sci. 282 (1998), 1476-1478.
  11. W. H. Reeves et al., Demonstration of ultra-flattened dispersion in photonic crystal fibers, Opt. Express 10 (2002), 609-613.
  12. P. J. Roberts et al., Control of dispersion in photonic crystal fiber, J. Opt. Fiber. Commun. Rep. 2 (2005), 435-461.
  13. Y. S. Lee et al., Diamond unit cell photonic crystal fiber with high birefringence and low confinement loss based on circular air holes, Appl. Opt. 54 (2015), no. 20, 6140-6145.
  14. Y. Ni et al., Dual-core photonic crystal fiber for dispersion compensation, IEEE Photon. Technol. Lett. 16 (2004), 1516-1518.
  15. S. K. Biswas et al., A modified design of a hexagonal circular photonic crystal fiber with large negative dispersion properties and ultrahigh birefringence for optical broadband communication, Photon. 6 (2019), 1-14.
  16. S. Biswas et al., Design of an ultrahigh birefringence photonic crystal fiber with large nonlinearity using all circular air holes for a fiber-optic transmission system, Photon. 5 (2018), 1-11.
  17. G. Stepniewski et al., Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm, Laser Phy. Lett. 11 (2017), no. 5, article no. 55103.
  18. L. Cherbi et al., Modelling of two rings photonic crystal fiber with scalar element method, J. Optoelectron. Adv. Mater. 15 (2013), no. 11-12, 1385-1391.
  19. F. Poletti et al., Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers, Opt. Express 13 (2005), 3728-3736.
  20. K. Saitoh, N. Florous, and M. Koshiba, Ultra flattened chromatic dispersion controllability using a defected-core photonic crystal fiber with low confinement loss, Opt. Express 13 (2005), 8365-8371.
  21. M. Zhang et al., Dispersion ultra-flattened square lattice photonic crystal fiber with small effective mode area and low confinement loss, Optik 125 (2014), 1610-1614.
  22. Z. L. Liu et al., Characteristics of a large negative dispersion and low confinement losses PCF, Semicond. Optoelectr, (2008).
  23. K. Saitoh et al., Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion, Opt. Express 11 (2003), 843-852.
  24. T. L. Wu and C. H. Chao, A novel ultra-flattened dispersion photonic crystal fiber, IEEE Photon. Technol. Lett. 17 (2005), 67-69.
  25. S. Yiou, Simulated Raman scattering in an ethanol core microstructured optical fiber, Opt. Express 13 (2005), 4786-4791.
  26. C. Martelli et al., Water core fresnel fiber, Opt. Express 13 (2005), 3890-3895.
  27. T. T. Alkeskjod, Highly tunable large core single mode liquid crystal photonic band gap fiber, App. Opt. 45 (2006), 2261-2264.
  28. F. M. Cox, A. Agyorus, and M. C. J. Large, Liquid filled hollow core microstructured polymer optical fiber, Opt. Express 14 (2006), 4135-4140.
  29. K. M. Gundu, M. Kolesik, and J. V. Moloney, Ultra-flatteneddispersion selectively liquid-filled photonic crystal fiber, Opt. Express 14 (2006), 6870-6878.
  30. J. Liao and T. Huang, Highly nonlinear photonic crystal fiber with ultrahigh birefringence using a nano-scale slot core, Opt. Fiber Technol. 22 (2015), 107-112.
  31. M. A. Hossain, Y. Namihira, and M. A. Islam, Polarization maintaining highly nonlinear photonic crystal fiber for supercontinuum generation at 1.55${\mu}m$, Opt. Laser Technol. 44 (2012), 1261-1269.
  32. W. Wang et al., Characteristics analysis of high birefringence and two zero dispersion points photonic crystal fiber with octagonal lattices, Acta Phy. Sin. 61 (2012), 144601-144607.
  33. M. Tiwari and V. Janyani, Two octave spanning supercontinuum in a soft glass photonic crystal fiber suitable for 1.55-${\mu}m$ pumping, J. Lightwave Technol. 29 (2011), no. 23, 3560-3565.
  34. R. Kumari, M. Sharma, and S. Konar, Lead silicate fiber with small dispersion and large nonlinearity at telecommunication wavelength, Optik 126 (2015), 2659-2662.
  35. J. S. Chiang and T. L. Wu, Analysis of propagation characteristics for an octagonal photonic crystal fiber (O-PCF), Opt. Commun. 258 (2006), 170-176.
  36. N. J. Flororus, K. Saitoh, and M. Koshiba, The role of artificial defects for engineering large effective mode area, flat chromatic dispersion and low leakage losses in photonic crystal fibers: towards high speed reconfigurable transmission platforms, Opt. Express 14 (2006), 901-913.
  37. B. K. Paul et al., Nanoscale GaP strips based photonic crystal fiber with high nonlinearity and high numerical aperture for laser applications, Results Phys. 10 (2018), 374-378.
  38. Y. E. Monfared et al., Selectively toluene-filled photonic crystal fiber Sagnac interferometer for temperature sensing applications, Results Phys. 13 (2019), 1-6.
  39. Y. E. Monfared and S. A. Ponomarenko, Highly nonlinear liquid-filled photonic crystal fibers, in Proc. Photon, North (PN), Ottawa, Canada, June, 2015, p. 1.
  40. Y. E. Monfared and S. A. Ponomarenko, Slow light generation in liquid-filled photonic crystal fibers via stimulated Brillouin scattering, Optik. Int. J. Light Electron Opt. 127 (2016), 5800-5805.
  41. H. Ademgil and S. Haxha, Highly birefringent photonic crystal fibers with ultralow chromatic dispersion and low confinement losses, J. Lightwave Techonol. 26 (2008), 441-448.
  42. Y. Sun et al., Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white light laser, J. Biomed. Opt. 14 (2009), 054009-054011.
  43. H. Saghaei et al., Ultra-wide mid-infrared supercontinuum generation in Αs40Se60 chalcogenide fibers: solid core PCF versus SIF, selected topics in quantum electronics, IEEE J. 22 (2016), no. 2, 1-8.
  44. H. Saghaei, M. Ebnali-Heidari, and M. K. Moravvej-Farshi, Midinfrared supercontinuum generation via $As_2$ $Se_3$ chalcogenide photonic crystal fibers, Appl. Opt. 54 (2015), no. 8, 2072-2079.
  45. A. Marandi et al., Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 ${\mu}m$, Opt. Express 20 (2012), no. 22, 24218-24225.
  46. H. Saghaei et al., Novel approach to adjust the step size for closedloop power control in wireless cellular code division multiple access systems under flat fading, IET Commun. 5 (2011), no. 11, 1469-1483.
  47. F. Begum et al., Supercontinuum generation in square photonic crystal fiber with nearly zero ultra-flattened chromatic dispersion and fabrication tolerance analysis, Opt. Commun. 284 (2011), no. 4, 965-970.
  48. K. Saitoh et al., Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion, Opt. Express 11 (2003), no. 8, 843-852.
  49. W. J. Wadsworth et al., Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source, JOSA B 19 (2002), no. 9, 2148-2155.
  50. S. Wang et al., Selective filling of photonic crystal fibers using focused ion beam milled microchannels, Opt. Express 19 (2011), no. 18, 17585-17590.
  51. K. Nielsen et al., Selective filling of photonic crystal fibres, J. Opt. A Pure Appl. Opt. 7 (2005), no. 8, L:13-L:20.
  52. Y. Ni et al., Dual-core photonic crystal fiber for dispersion compensation, IEEE Photon. Technol. Lett. 16 (2004), 1516-1518.
  53. T. S. Reena et al., Rectangular-core large mode area photonic crystal fiber for high power applications: Design and analysis, Appl. Opt. 55 (2016), 4095-4100.
  54. M. S. Islam et al., A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime, IEEE Sens. J. 18 (2018), 575-582.
  55. S. Rana et al., Single mode porous fiber for low loss polarization maintaining terahertz transmission, Opt. Eng. 55 (2016), 1-6.
  56. C. S. Kumar and R. Anbazhagan, Investigation on chalcogenide and silica based photonic crystal fibers with circular and octagonal core, AEU - Int, J. Electron. Commun. 72 (2017), 40-45.
  57. P. Kumar, A. Tripathy, and J. S. Roy, Design and analysis of single mode photonic crystal fibers with zero dispersion and ultra-low loss, Int. J. Electron. Telecommun. 64 (2018), no. 4, 541-546.
  58. P. S. Majhi and R. Choudhary, Circular photonic crystal fibers: numerical analysis of chromatic dispersion and loss, ISRN Opt. 2013 (2013), 1-9.
  59. P. Kumar, V. Kumar, and J. S. Roy, Design of quad core photonic crystal fibers with flattened zero dispersion, Int. J. Electron. Commun. (AEÜ) 98 (2019), 265-272.
  60. F. Zolla et al., Foundations of photonic crystal fibers. Published by Imperial College Press and distributed by World Scientific Publishing Co., 2005.
  61. A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics, 1st, ed, South Asian Edition, 1999.
  62. J. D. Joannopoulos et al., Photonic Crystal Fiber: Molding the Flow of Light, 2nd ed, Princeton University Press, Princeton, NJ, 2008.
  63. K. Thyagarajan et al., A novel design of a dispersion compensating fiber, IEEE photon. Technol. Lett. 8 (1996), 1510-1512.
  64. G. Agrawal, Nonlinear Fiber Optics, 2nd ed, Academic Press, New York, NY, 1995.
  65. J. M. Dudely and J. R. Tylor, Supercontinuum generation in optical fibers, Cambridge University Press, Cambridge, UK, 2010.
  66. P. Kumar, K. F. Fiaboe, and J. S. Roy, Highly birefringent do-octagonal photonic crystal fibers with ultra-flattened zero dispersion for supercontinuum generation, J. Microwaves, Optoelectron. Electromagn. Applicat. 18 (2019), no. 1, 80-95.
  67. M. S. Islam et al., Porous core photonic crystal for ultra-low material loss in terahertz regime, IET Commun. 10 (2018), no. 16, 1-5.
  68. T. M. Monmor et al., Modelling large air fraction holey optical fibers, J. Lightwave Technol. 18 (2000), 50-54.
  69. N. M. Dragomir et al., Refractive index profiling of optical fibers using differential interference contrast microscopy, IEEE Photon. Technol. Lett. 17 (2005), 2149-2151.
  70. B. Zsigri, J. Laegsgaard, and A. Bjarklev, A novel photonic crystal fiber design for dispersion compensation, J. Opt. A: Pure Appl. Opt. 6 (2004), 717.
  71. A. Cucinotta et al., Amplification properties of Er3+-doped photonic crystal fibers, J Lightwave Technol. 21 (2003), 782-788.
  72. J. Fu et al., Experimental study on all Yb-doped photonic crystal fiber laser, in Proc. SPIE, Fiber Lasers XIV: Technol. Syst. San Francisco, CA, USA, 2017, 100832H:1-8.
  73. Z. Xing-Ping et al., High stability supercontinuum generation in lead silicate SF57 photonic crystal fibers, Chin. Phys. B 22 (2013), 1-4.
  74. M. L. Ferhat, L. Cherbi, and I. Haddouche, Supercontinnum generation in silica photonic crystal fiber at 1.3${\mu}m$ and 1.65${\mu}m$ wavelength for optical coherence tomography, Optik 152 (2018), 106-115.
  75. M. Sharma, S. Konar, and R. K. Khan, Supercontinuum generation in highly nonlinear hexagonal photonic crystal fiber at very low power, J. Nanophoton. 9 (2015), 1-8.
  76. G. D. Kirishna et al., Analysis of zero dispersion shift and supercontinuum generation near IR in circular photonic crystal fibers, Optik 145 (2017), 599-607.
  77. Y. E. Monfared and S. A. Ponomarenko, Extremely nonlinear carbon-disulfide-filled photonic crystal fiber with controllable dispersion, Opt. Material. 88 (2019), 406-411.