Stability of Co Semigroups perturbed via the steady state Riccati equation (SSRE) is studied. We consider an infinite dimensional system : .chi. over dot = A.chi. + Bu, in, (A), domain of A, where A is the infinitesimal generator of a Co semigroup [T(t), t.geq.0] in H. If the original Co semigroup [T(t), t.geq.0] has a lower bound : vertical bar T(t).chi. vertical bar .geq. k vertical bar .chi. vertical bar, for all .chi. in H. t.geq. 0 and k>0, then the perturbed Co semigroup via the SSRE, where the feedback operator B is compact, cannot be exponentially stable. Physical interpretation of this result is as follows : in real applications, a finite number of actuators are available, therefore the operator B is compact. When the original system is inherently unstable, that is, has an infinite number of unstable modes, the perturbed system via the SSRE cannot be stable with a uniform decay rate.