- SURFACES IN 4-DIMENSIONAL SPHERE
- Yamada, Akira ;
- Journal of the Korean Mathematical Society, volume 33, issue 1, 1996, Pages 121~136
Abstract
Met $\tilde{M} = (\tilde{M}, \tilde{J}, <>)$ be an almost Hermitian manifold and M a submanifold of $\tilde{M}$. According to the behavior of the tangent bundle TM with respect to the action of $\tilde{J}$, we have two typical classes of submanifolds. One of them is the class of almost complex submanifolds and another is the class of totally real submanifolds. In 1990, B. Y. Chen [4], [5] introduced the concept of the class of slant submanifolds which involve the above two classes. He used the Wirtinger angle to measure the behavior of TM with respect to the action of $\tilde{J}$.