- BOUNDS ON PROBABILITY FOR THE OCCURRENCE OF EXACTLY r, t OUT OF m, n EVENTS
- Lee, Min-Young ;
- Communications of the Korean Mathematical Society, volume 12, issue 2, 1997, Pages 393~401
Abstract
Let $A_1,A_2,\cdots,A_m$ and $B_1,B_2,\cdots,B_n$ be two sequences of events on a given probability space. Let $X_m$ and $Y_n$, respectively, be the number of those $A_i$ and $B_j$, which occur we establish new upper and lower bounds on the probability $P(X=r, Y=t)$ which improve upper bounds and classical lower bounds in terms of the bivariate binomial moment $S_{r,t},S_{r+1,t},S_{r,t+1}$ and $S_{r+1,t+1}$.