- THE INVARIANCE PRINCIPLE FOR LINEARLY POSITIVE QUADRANT DEPENDENT SEQUENCES
- Kim, Tae-Sung ; Han, Kwang-Hee ;
- Communications of the Korean Mathematical Society, volume 9, issue 4, 1994, Pages 951~959
Abstract
A sequence ${X_j : j \geq 1}$ of random variables is said to be pairwise positive quadrant dependent (pairwise PQD) if for any real $r-i,r_j$ and $i \neq j$ $$ P{X_i > r_i,X_j > r_j} \geq P{X_i > r_i}P{X_j > r_j} $$ (see [8]) and a sequence ${X_j : j \geq 1}$ of random variables is said to be associated if for any finite collection ${X_{i(1)},...,X_{j(n)}}$ and any real coordinatewise nondecreasing functions f,g on $R^n$ $$ Cov(f(X_{i(1)},...,X_{j(n)}),g(X_{j(1)},...,X_{j(n)})) \geq 0, $$ whenever the covariance is defined (see [6]). Instead of association Cox and Grimmett's [4] original central limit theorem requires only that positively linear combination of random variables are PQD (cf. Theorem $A^*$).