- Weak semicontinuity for unbounded operators
- Kim, Hyoungsoon ;
- Bulletin of the Korean Mathematical Society, volume 34, issue 3, 1997, Pages 447~457
Abstract
Let A be a $C^*$-algebra and $A^**$ its enveloping von Neumann algebra. Pedersen and Akemann developed four concepts of lower semicontinuity for elements of $A^**$. Later, Brown suggested using only three classes: strongly lsc, middle lsc, and weakly lsc. In this paper, we generalize the concept of weak semicontinuity [1, 3] to the case of unbounded operators affiliated with $A^**$. Also we consider the generalized version of the conditions of the Brown's theorem [3, Proposition 2.2 & 3.27] for unbounded operators.