- Topological Imitations and Reni-Mecchia-Zimmermann's Conjecture
- Kawauchi, Akio ;
- Kyungpook mathematical journal, volume 46, issue 1, 2006, Pages 1~9
Abstract
M. Reni has shown that there are at most nine mutually inequivalent knots in the 3-sphere whose 2-fold branched covering spaces are mutually homeomorphic, hyperbolic 3-manifolds. By observing that the Z-homology sphere version of M. Reni's result still holds, M. Mecchia and B. Zimmermann showed that there are exactly nine mutually inequivalent, knots in Z-homology 3-spheres whose 2-fold branched covering spaces are mutually homeomorphic, hyperbolic 3-manifolds, and conjectured that there exist exactly nine mutually inequivalent, knots in the true 3-sphere whose 2-fold branched covering spaces are mutually homeomorphic, hyperbolic 3-manifolds. Their proof used an argument of AID imitations published in 1992. The main result of this paper is to solve their conjecture affirmatively by combining their argument with a theory of strongly AID imitations published in 1997.