- Scale-Up Factor for Seismic Analysis of Building Structure for Various Coordinate Systems
- Yu, Il-Hyang ; Lee, Dong-Guen ; Ko, Hyun ; Kim, Tae-Ho ;
- Journal of the Earthquake Engineering Society of Korea, volume 11, issue 5, 2007, Pages 33~47
- DOI : 10.5000/EESK.2007.11.5.033
Abstract
In a practical engineering, the equivalent static analysis (E.S.A) and the response spectrum analysis (R.S.A) are generally used for the seismic analysis. The base shears obtained from the E.S.A are invariable no matter how the principal axes of building structures are specified on an analysis program while those from the R.S.A are variable. Accordingly, the designed member size may be changed by how an engineer specify the principal axes of a structure when the R.S.A is used. Moreover, the base shears in the normal direction to the excitation axis are sometimes produced even when an engineer performs a response spectrum analysis in only one direction. This tendency makes the base shear, which is used to calculate the scale-up factor, relatively small. Therefore the scale-up factor becomes larger and it results in uneconomical member sizes. To overcome these disadvantages of the R.S.A, an alternative has been proposed in this study. Three types of example structures were adapted in this study, i.e. bi-direction symmetric structure, one-direction antisymmetric structure and bi-direction antisymmetric structure. The seismic analyses were performed by rotating the principal axes of the example structures with respect to the global coordinate system. The design member forces calculated with the scale-up factor used in the practice were compared with those obtained by using the scale-up factor proposed in this study. It can be seen from this study that the proposed method for the scale-up factor can provide reliable and economical results regardless of the orientation of the principal axes of the structures.