- M-SCOTT CONVERGENCE AND M-SCOTT TOPOLOGY ON POSETS
- Yao, Wei ;
- Honam Mathematical Journal, volume 33, issue 2, 2011, Pages 279~300
- DOI : 10.5831/HMJ.2011.33.2.279

Abstract

For a subset system M on any poset, M-Scott notions, such as M-way below relation,M-continuity,M-Scott convergence (of nets and filters respectively) and M-Scott topology are proposed Any approximating auxiliary relation on a poset can be represented by an M-way below relation such that this poset is M-continuous. It is shown that a poset is M-continuous iff the M-Scott topology is completely distributive. The topology induced by the M-Scott convergence coincides with the M-Scott topology. If the M-way below relation satisfies the property of interpolation then a poset is M-continuous if and only if the M-Scott convergence coincides with the M-Scott topological convergence. Also, M-continuity is characterized by a certain Galois connection.