- OBSTACLE SHAPE RECONSTRUCTION BY LOCALLY SUPPORTED BASIS FUNCTIONS
- Lee, Ju-Hyun ; Kang, Sungkwon ;
- Honam Mathematical Journal, volume 36, issue 4, 2014, Pages 831~852
- DOI : 10.5831/HMJ.2014.36.4.831

Abstract

The obstacle shape reconstruction problem has been known to be difficult to solve since it is highly nonlinear and severely ill-posed. The use of local or locally supported basis functions for the problem has been addressed for many years. However, to the authors' knowledge, any research report on the proper usage of local or locally supported basis functions for the shape reconstruction has not been appeared in the literature due to many difficulties. The aim of this paper is to introduce the general concepts and methodologies for the proper choice and their implementation of locally supported basis functions through the two-dimensional Helmholtz equation. The implementations are based on the complex nonlinear parameter estimation (CNPE) formula and its robust algorithm developed recently by the authors. The basic concepts and ideas are simple. The derivation of the necessary properties needed for the shape reconstructions are elementary. However, the capturing abilities for the local geometry of the obstacle are superior to those by conventional methods, the trial and errors, due to the proper implementation and the CNPE algorithm. Several numerical experiments are performed to show the power of the proposed method. The fundamental ideas and methodologies described in this paper can be applied to many other shape reconstruction problems.