This study was performed to investigate the influence of the spinal adenosine

receptors on the central regulation of blood pressure (BP) and heart rate (HR), and to define whether its mechanism is mediated by cyclic AMP (cAMP), cyclic GMP (cGMP) or potassium channel. Intrathecal (i.t.) administration of drugs at the thoracic level were performed in anesthetized, artificially ventilated male Sprague-Dawley rats. I.t. injection of adenosine

receptor agonist,

-cyclohexyladenosine (CHA; 1, 5 and 10 nmol) produced dose dependent decrease of BP and HR and it was attenuated by pretreatment of 50 nmol of 8-cyclopentyl-1,3-dimethylxanthine, a specific adenosine

receptor antagonist. Pretreatment with a cAMP analogue, 8-bromo-cAMP, also attenuated the depressor and bradycardiac effects of CHA (10 nmol), but not with cGMP analogue, 8-bromo-cGMP. Pretreatment with a ATP-sensitive potassium channel blocker, glipizide (20 nmol) also attenuated the depressor and bradycardiac effects of CHA (10 nmol). These results suggest that adenosine

receptor in the spinal cord plays an inhibitory role in the central cardiovascular regulation and that this depressor and bradycardiac actions are mediated by cAMP and potassium channel.