- A NOTE ON CONNECTEDNESS IM KLEINEN IN C(X)
- BAIK, BONG SHIN ; RHEE, CHOON JAI ;
- The Pure and Applied Mathematics, volume 22, issue 2, 2015, Pages 139~144
- DOI : 10.7468/jksmeb.2015.22.2.139

Abstract

Abstract. In this paper, we investigate the relationships between the space X and the hyperspace C(X) concerning admissibility and connectedness im kleinen. The following results are obtained: Let X be a Hausdorff continuum, and let A ∈ C(X). (1) If for each open set U containing A there is a continuum K and a neighborhood V of a point of A such that V ⊂ IntK ⊂ K ⊂ U, then C(X) is connected im kleinen. at A. (2) If IntA ≠ ø, then for each open set U containing A there is a continuum K and a neighborhood V of a point of A such that V ⊂ IntK ⊂ K ⊂ U. (3) If X is connected im kleinen. at A, then A is admissible. (4) If A is admissible, then for any open subset U of C(X) containing A, there is an open subset V of X such that A ⊂ V ⊂ ∪U. (5) If for any open subset U of C(X) containing A, there is a subcontinuum K of X such that A ∈ IntK ⊂ K ⊂ U and there is an open subset V of X such that A ⊂ V ⊂ ∪ IntK, then A is admissible.