- An Analysis on the Understanding of High School Students about the Concept of a Differential Coefficient Based on Integrated Understanding
- Lee, Hyun Ju ; Ryu, Jung Hyeon ; Cho, Wan Young ;
- Communications of Mathematical Education, volume 29, issue 1, 2015, Pages 131~155
- DOI : 10.7468/jksmee.2015.29.1.131

Abstract

The purpose of this study is to investigate if top-ranked high school students do integrated understanding about the concept of a differential coefficient. For here, the meaning of integrated understanding about the concept of a differential coefficient is whether students understand tangent and velocity problems, which are occurrence contexts of a differential coefficient, by connecting with the concept of a differential coefficient and organically understand the concept, algebraic and geometrical expression of a differential coefficient and applied situations about a differential coefficient. For this, 38 top-ranked high school students, who are attending S high school, located in Cheongju, were selected as subjects of this analysis. The test was developed with high-school math II textbooks and various other books and revised and supplemented by practising teachers and experts. It is composed of 11 questions. Question 1 and 2-(1) are about the connection between the concept of a differential coefficient and algebraic and geometrical expression, question 2-(2) and 4 are about the connection between occurrence context of the concept and the concept itself, question 3 and 10 are about the connection between the expression with algebra and geometry. Question 5 to 9 are about applied situations. Question 6 is about the connection between the concept and application of a differential coefficient, question 8 is about the connection between application of a differential coefficient and expression with algebra, question 5 and 7 are about the connection between application of a differential coefficient, used besides math, and expression with geometry and question 9 is about the connection between application of a differential coefficient, used within math, and expression with geometry. The research shows the high rate of students, who organizationally understand the concept of a differential coefficient and algebraic and geometrical expression. However, for other connections, the rates of students are nearly half of it or lower than half.