Proceedings of the Korean Society for Noise and Vibration Engineering Conference (한국소음진동공학회:학술대회논문집)
The Korean Society for Noise and Vibration Engineering
 Semi Annual
 /
 15982548(pISSN)
Domain
 Environment ＞ Noise/Vibration Control and Management
2002.05

모든 과학 및 공학분야에 걸쳐, 신호나 함수를 어떻게 표현하는 것이 바람직한 것인지에 대해서 많은 연구가 이루어져 왔다. 만약 신호나 함수를 적절하게 잘 표현하게 되면, 그것들 속에 내재된 의미있는 물리적 현상을 쉽게 파악할 수도 있고, 최소한의 함수나 데이터로 효과적으로 표현할 수도 있다. 지난 10여년 동안 비약적 발전을 해온 ‘웨이블렛’이라는 것도 신호나 함수를 표현하는 새로운 도구인데, 이것이 각광을 받고 있는 이유는 웨이블렛이 전통적인 표현방법이 제공하지 못하는 특성을 제공하기 때문이다.(중략)

Research Direction The significant research direction in mechanical fault diagnosis area: Theorles and approaches for fault feature extracting and fault classification. Identification Complicated fault generating mechanism and its model Intelligent fault diagnosis system (including the expert system and network based remote diagnosis system) One of the Key Points： Fault feature extracting techniques based on (modern) signal processing(omitted)

0 승차감에 대한 인식 변화 0 환경 규제 강화 0 자동차의 진동 소음 중요성 증대 0 자동차 시스템에 대한 구동계의 진동 소음 비중이큼(중략)

This paper presents the property of the Squeeze Film Damper (SFD) using MagnetoRheological fluid (MR fluid). The damping property of a SFD for a flexible rotor system varied according to vibration mode. MR fluid is known as a functional fluid with controllable apparent viscosity of the fluid by applied magnetic field strength. When the MR fluid is applied in the SFD, the SFD using MR fluid can effectively reduce vibrations of the flexible rotor in a wide range of rotating speed by control of the applied magnetic field strength. To investigate in detail the SFD using MR fluid, the SFD to support one mass was constructed and its performance was experimentally investigated in the present study. The damping property of the SFD using MR fluid has viscous damping by Newtonian fluid, but not Coulomb friction by Bingham fluid. Therefore, The system damped by the SFD can be considered as a linear system.

The spectrum of impulse response signal which is obtained from an impulse hammer testing is used for frequency response function, nevertheless it has serious faults when the record length for the signal processing is not very long. The faults cannot be avoided with the conventional signal analyzer that is processing all the signals as if they are always periodic. The signals generated by the impact hammer are undoubtedly nonperiodic because of the damping, and are acquired for limited recording time due to the memory as well as the computation performance of the signal analyzer. This paper will make clear the relation between the faults and the length of recording time, and propose the way for solving the faults.

Printed Circuit Boards for satellite are composed of multilayered copper plate and glass epoxy. Each copper layer have the complicated and different pattern to operate correctly for its mission. Especially. copper layer give effect on the PCB stiffness seriously. But It can make more complicate to predict the exact stiffness of PCB. In KOMPSAT2 program, too many type of PCB are used for each electronic unit, and they have different type of pattern of copper layer. Solar array regulator has two type of PCB and it will be considered for this study. In this study. we calculate the PCB board stiffness of KOMPSAT2 SAR unit considering the concept of simplified representative volume element. It will be correlated with the test results under KOMPSAT2 vibration environmental condition to increase the reliability of this study.

A simple beam subjected to a uniformly distributed tangential follower force and the successive two moving springmass systems upon it constitute this vibration system. The influences of the velocities of the moving springmass system, the distance between the successive two moving springmass systems and the uniformly distributed tangential follower force have been studied on the dynamic behavior of a simple beam by numerical method. The uniformly distributed tangential follower force is considered within its critical value of a simple beam without the successive two moving springmass systems, and three kinds of constant velocities and constant distance of the successive two moving springmass systems are also chosen. Their coupling effects on the transverse vibration of the simple beam are inspected too.

A twodegree of freedom model is suggested to understand the basic dynamical behaviors of the interaction between two masses of the friction induced vibration system. The two masses may be considered as the pad and the disk of the brake, The phase space analysis is performed to understand complicated dynamics of the nonlinear model. Attractors in the phase space are examined for various conditions of the parameters of the model especially by emphasizing on the damping parameters. In certain conditions, the attractor becomes a limit cycle showing the stickslip phenomena. In this paper, not only the existence of the limit cycle but also the size of the limit cycle is examined to demonstrate the nonlinear dynamics that leads the unstable state. For the two different cases of the system frequency ((1)two masses with same natural frequencies, (2) with different natural frequencies), the propensity of limit cycle is discussed in detail. The results show an important fact that it may make the system worse when too much damping is present in the only one part of the masses.

Vibration isolation technology using an air spring and laminated rubber bearing is widely used because it has excellent vibration isolation characteristics. In the part of that, we usually make use of the selfdamped air suing. It is occupied two chambers, restrictor, diaphragm and load plate. Two chambers contain compressed air and the volume of chambers and the area of load plate give a definition of stiffness and load. The restrictor and the volume ratio of two chambers give a definition of damping ratio. The conventional model of restrictor is made of one orifice and it causes turbulent flow in the orifice at the region of large deflection. The stillness of air suing is larger and the damping is lower in the region of large deflection. In the multiorifice case, the stiffness is similar to air spring with one orifice but damping ratio is larger than conventional air spring. And damping ratio is smaller than conventional air suing in small deflection region. Deflection is small in the region of high frequency so small damping is better than large damping. As a result, we can reduce the storage stiffness of air suing in the wide region of deflection and increase the damping ratio in the region of large deflection. After this, we will try to and the relation of Reynolds Number and Flow Resistance then we are going to make another restrictor for air spring to improve damping ratio and stiffness.

In this study, the dynamic absorbing system for the shoulderfired system with highlevelimpact force has been investigated. for this purpose, firstly, mathematical model based on the short recoil system has been constructed. In order to design the dynamic absorbing system, parameter sensitivity analysis and parameter optimization process have been performed under constraints of moving displacement and transmitted force. In order to enhance the efficiency of energy dissipation, the strokedependent variable damping system has been analyzed. finally, the performance of the designed dynamic absorbing system has been evaluated by simulation with respect to the benchmark system.

The purpose of this study is to propose the general method for evaluating the equivalent damping ratios of a structure with supplemental response control dampers. We define Lyapunov function of which derivative can be expressed in autoregressive form and evaluate the equivalent damping ratios by using Lyapunov function and its derivative. This Lyapunov function may be called as generalized structural energy. In this study, it is assumed that the response of a structure is stationary random process and control dampers do not affect the modal shapes of a structure, and the structure has proportional damping. Proposed method can be used to get the equivalent damping ratios of a structure with nonlinear control dampers such as friction dampers as well as linear control dampers. To show the effectiveness of the proposed method. we evaluate the equivalent damping ratios of a structure with viscous dampers. AMDs. and friction dampers. The equivalent damping ratios from proposed method are compared to those from eigenvalue analysis for linear control dampers. and those from time history analysis for nonlinear control dampers. respectively.

The rigid body properties of a structure may be estimated easily if the massline of the structure could be taken exactly. However, the exact massline may be hard to be obtained exactly in experiments. The mass line value can be read from the mass line in frequency response function. However, the mass lines in the frequency response function sometimes show the fluctuation with frequency, and it cannot be read correctly. In this paper, the wavelet transform is applied to obtain the good mass line value. The mass line calculated by using wavelet transform has unique value and showed in the range of fluctuated values of frequency response function. The rigid body properties obtained by wavelet transform also showed better results than those by fourier transform.

In a recent construction industry, cable supported structures such as a cablestayed bridge or space stadium have been increasingly constructed. Generally the stay cables as a critical member should be adjusted to be satisfied with the design tension forces. In this purpose, a vibration method has been applied to estimate the tension forces exerted to the existing stay cables. In this study, cable vibration tests were carried out to estimate the cable tension forces comparing with theoretical and practical formulas. From the measured frequencies obtained from free vibration and impulsive tests, the accuracy of 1he estimated tension forces is confirmed according to use only the first single mode or higher multiple modes.

After the vibration source is searched in optical disk drive as an information storage device broadly used the influence of it against FES(Focusing Error Signal) which is a kind of positioning error of pick up from the circuit is carefully examined. For that Purpose, partial coherence function method is applied on a simple multidegree of freedom model made for the theoretical verification and it is practically introduced in optical disk drive for analyzing the effect of vibration source. Finally, partial coherence output spectrum is attentively observed in order to know which vibration source is a great influence on FES.

We have made known the study of shape development of interference device for vehicle noise control. It's primary object greatly attenuate the noise due to transport vehicle by small products installed on the noise barrier edge. Also, it is able to improve the insertion loss of a noise barrier without increasing the height. The present time, we set up a newly manufactured products on the noise barrier edge and testify to it's the performance make use of an experiment and evaluation for the reduction of highway traffic noise. In this paper the frequency characteristic of interference device of noise barriers with attached newly developed products in terms of shape, absorptive material and split panel, are examined using field test at highway.

The fluid induced vibration (FIV) phenomena of a 2D.O.F airfoil system have been investigated in low Reynolds number incompressible flow region. Unsteady flows with viscosity are computed using twodimensional incompressible Navierstokes code. To validate developed NavierStokes code, steady and unsteady flow fields around airfoil are analyzed. The present fluid/structure interaction analysis is based on the most accurate computational approach with computational fluid dynamics (CSD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed fur the low Reynolds region (R
$_{N}$ =500~5000) that has a dominancy of flow viscosity. The effect of R$_{N}$ on the fluid/structure coupled vibration instability of 2DOF airfoil system is presented and the effect of initial angle of attack on the dynamic instability are also shown.own. 
It has tried to predict dynamic response and establish answering about global or local dynamic problem in structures using experimental and analysis method. One of such a try, it be proposed SemiEmpirical Method that reduce error element of input information about dynamic analysis using dynamic experimental study and measurement data in the basis of realstructure. In this paper, the dynamic response problem about piping system that be setup THERMOWELL produce flow fluid dynamic force using SemiEmpirical Method

This paper deals with the measurement of the fluid viscosity by using the torsional vibration of a circular red excited by a torsional vibrator at one end. The effect of an adjacent viscous fluid on the torsional vibration of the rod has been studied theoretically and expressed in terms of the mechanical impedance. The theoreticallyobtained trend that the mechanical impedance is proportional to the square root of the viscosity times the density of the fluid has been confirmed by the impedance measurement. The paper demonstrates that a torsionallyvibrating rod can be used as a sensor to measure the viscosity of a fluid.

The flying height of contact slider is determined by vertical and pitching motions. This paper performed the computer simulation for flying height change of contact slider. It is changed by many parameters, contact stiffness. contact damping, all bearing stiffness ratio and so on. So computer simulation analysis is performed for knowing for what change of these parameters influences in flying height of contact slider. The practical recording zone surface is gotten by using SPM. In recording zone, flying height is simulated for each parameter. the settling time which the flying height of contact slider is lower than 10nm is analyzed over practical disk surface for changing each parameter. Through these results, the contact slider can be analyzed for more accuracy dynamic characteristics.

This paper presents an analytical method to Investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have timevarying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill's infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.

Loading/Unloading(L/UL) mechanism has been considered to be an alternative to contact startstop(CSS) mechanism which eliminates stiction and wear associated with frequent start and stop process. It has other advantages including increased areal density due to lower flying height, reduced power consumption, and improved shock resistance. In order for L/UL to be Implemented in Nearfield recording system properly, dynamics of optical flying head must be understood and optimized. In this paper the dynamic characteristics during loading process is analyzed numerically to investigate the effect of design parameters such as loading speed. slider shape, and initia conditions on the dynamic reponses of flying head..

This research presents an analytical model to investigate the stability due to the ball bearing waviness in a rotating system supported by two ball bearings. The stiffness of a ball bearing changes periodically due to the waviness in the rolling elements as the rotor rotates, and it can be calculated by differentiating the nonlinear contact forces. The linearized equations of motion can be represented as a parametrically excited system in the form of Mathieu's equation, because the stiffness coefficients have timevarying components due to the waviness. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as the simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving the Hill's infinite determinant of these algebraic equations. The validity of this research is proved by comparing the stability chart with the time responses of the vibration model suggested by prior researches. This research shows that the waviness in the rolling elements of a ball bearing generates the timevarying component of the stiffness coefficient, whose frequency is called the frequency of the parametric excitation. It also shows that the instability takes place from the positions in which the ratio of the natural frequency to the frequency of the parametric excitation corresponds to i/2 (i= 1,2,3..).

The intermittent high vibration has been occurred one or two times a day for a 500MW large steam turbine during 5 months. This abnormal vibration was caused by the rubbing between the rotor and the carbide accumulated on the seal tooth of oil deflector. It was found that the accumulated carbide was insulation material installed on the HIP casing from the examination of the chemical composition. Also, this paper presents the mechanism of the intermittent high vibration and the proper method to eliminate this vibration problem. This result would be good practice to find the solution of similar high vibration in the steam turbines for power plant as well as industrial rotating machineries.

This paper deals with the active vibration control of a simplysupported beam under a Moving mass using fuzzy control technique. Governing equation3 for dynamic responses of the beam under a moving mass are derived by Galerkin's mode summation method. Dynamic responses of the beam are obtained by RungeKutta integration method, and are compared with experimental results. For the active vibration control of the beam due to moving mass, a controller based on fuzzy logic was designed. The numerical predictions for dynamic deflections of the beam have a good agreement with the experimental results well. As for the fuzzy control of the tested beam, more than 50% reductions of dynamic deflection and residual vibrations under a moving mass are demonstrated.

This paper deals with a novel shunted actuator, which has a capability to suppress multimode vibration amplitudes by using a pair of piezoceramic patches. In order to describe the characteristic behaviors of shunted dampers connected with a series and a parallel resistornegative capacitive branch circuit, the stiffness ratio and loss factor with respect to the nondimensional frequency are considered. To obtain a guideline model of a piezo/beam system connected with a series and a parallel resistornegative capacitor branch circuit, the governing equations of motion is derived through Hamiltons principle and a piezo sensor equation as well as a shunt damping matrix is developed. The theoretical analysis shows that the shunted actuator developed in this study can significantly reduce multiplemode vibration amplitudes simultaneously over the whole structural frequency range.

A new method is presented for the isolation of resonances from scattered waves for elastic wave resonance scattering problems. The resonance scattering function consisting purely of resonance information is defined. Elastic wave resonance scattering from a waterfilled cylindrical cavity imbedded in an aluminum matrix is numerically analyzed. The classical resonance scattering theory and the new method compute different magnitudes and phases of the resonances from each partial wave, and therefore. their total resonance spectra are quite different. The exact
$\pi$  radians phase shifts through the resonance and antiresonance frequencies show that the proposed method properly extracts the vibrational resonance information of the scatterer compared to resonance scattering theory. 
Vibration Characteristics of High Pressure MultiStage Pump with AntiSwirl Injection Balance SleeveAs the tangential flow inside the clearance of tribe elements such as bearings and seals is increased as the shaft speed increases, the system stability will be decreased due to the increment of the instability parameter. To reduce the tangential flow inside the clearance of the balance sleeve, antiswirl injection mechanism is applied. The balance sleeve is used in resisting the axial force induced by impeller in high pressure multistage pump. In this paper, total three cases are experimentally investigated; original balance steeve, antiswirl injection balance steeve with 0 axial degree and antiswirl injection balance sleeve with 30 axial degree. Experiments are focused in the comparison of vibration level and leakage flow rate. The results clearly shows that the antiswirl injection balance sleeve with 0 axial degree improves the vibration characteristics. However, the antiswirl injection balance sleeve with 30 degree aggravates the vibration characteristics. In the standpoint of leakage performance, both antiswirl injection balance sleeves show the better result than the original balance sleeve.

A general solution method is presented to obtain the unbalance response orbit from the finite element based equations of motion of a gearcoupled twoshaft rotorbearing system. Particularly, are proposed the analytical solutions of major and minor axis radii of the orbit. The method has been applied to analyze the unbalance response of a 800 refrigerationton turbochiller rotorbearing system, having a bullpinion speed increasing gear. The bumps of unbalance responses have been observed at the first torsional natural frequency due to the coupling of lateral and torsional dynamics by the gear meshing. Further, the proposed analytical solutions have been validated with results obtained by a full numerical approach.

For the purpose of high outlet pressure, compactness and low vibration and noise, modem reciprocating air compressors are tend to have a multistage Wtype or Vtype cylinder arrangement. An effective counter weight calculation method is presented for reducing the inertia forces of the compressor. This calculation method is using the complex representation and verified its validity. A design program for the counter weight of Wtype or Vtype air compressor was presented to the manufacturer, A designed counter weight was attached to the Wtype or Vtype air compressor. Vibration test results gave us improved performance.

Lubricating oil supply system is an essential instrument for safe turbine operation. A lubricating condition may cause the abnormal vibration of turbine. In this paper we have discussed the abnormal vibration of turbine due to lubricating oil. Dusts of the air usually attach to end of the oil deflector and contact particles of the bearing oil. Dusts which were contacted particles of the bearing oil were changed into carbon deposit because of high temperature. therefore, carbon deposits occur abnormal vibration of the turbine when they contact a rotor. So, we have solved this problems through the various maintenance.

Usually vibration properties are obtained from frequency response functions or impulse response functions of a system. Since the contact type sensors can affect the characteristics of vibrating systems, the noncontact type sensors such as laser Doppler vibrometer (LDV) are being widely used. Currently researches are being carried out in terms of modal analysis using a scanning vibrometer. For the continuous scan; the Chebyshev demodulation (or polynomial) is apparently suggested to extract the mode shapes. With single frequency sinusoidal excitation, this approach is well fitted. In this research, the Chebyshev demodulation technique has been applied to the impact excitation case. The vibration of the tested structure is modeled using impulse response functions. The technique is also adopted to the random excitation case. In order to verify the technique, a simply supported beam was chosen as the test rig. The calculation modules are developed by using MATLAB
$\^$ (R)/ in WindowsNT$\^$ (R)/ environment. 
A rate gyroscope has been used popularly to measure the angular motion of a given vehicle using a symmetric rotor spinning rapidly about its symmetry axis. Since the rapid rotation is required in this type of gyroscope, the motor has been used to make the rotor spin, so that it results in a heavy configuration. The tuningfork gyroscope has been developed to avoid this problem, which utilizes a coriolis coupling term and vibration about one axis. Because of the coriolis effect, the vibration of one axis is transferred to other axis when the angular motion along the vibrating axis is given to the system. The concept of a tuningfork gyroscope was recently realized using MEMS techniques. However, the dynamic characteristics of the tuningfork gyroscope has not been discussed in detail. In this study, we derived the equations of motion for the tuningfork type gyroscope using the energy approach and investigated the dynamic characteristics by means of numerical analysis.

The rigid body characteristics (value of mass, Position of center of mass, moments and products of inertia) of mechanical systems can be identified from FRF data or vibration spectra of rigid body motion. Therefore the accuracy of rigid body characteristics is connected directly with the accuracy of measured data for rigid body motions. In this paper, a method of improving accuracy of measurement of rigid body motion is presented. Applying rigid body theory, ail translational and rotational displacements at a tentative point on the rigid body are calculated using the measured translational displacements for several points and transfer matrix. Then the estimated displacements for the identical points are calculated using the 6 displacements of the tentative Point and transfer matrix. By using correlation coefficient between measured and estimated displacements, we can detect the existence of errors that are contained in a certain measured displacement. Consequently, the improved rigid body motion with respect to a tentative point can be obtained by eliminating the contaminated data.

For an elastically suspended rigid body with the planes of symmetry in a three dimensional space, a novel analysis fur the vibration modes is presented. From the decompositions of the stiffness and inertia matrices, the conditions for the existence of pure translation and pure couple modes are analyzed for an elastically suspended rigid body with the planes of symmetry. From this analysis, it can be showed that how the structure of stiffness and inertia must be related in order to produce the pure translation and pure couple modes when an elastically suspended rigid body has one, two, or three planes of symmetry.

A modeling method for the dynamic characteristic analysis of a translationally accelerated trapezoidal cantilever plate is presented in this paper. The equations of motion for the plate are derived and transformed into a dimensionless form. The effects of the inclination angles and the acceleration on the vibration characteristics of the plate are investigated. Incidentally, natural frequency loci veering and associated mode shape variations are observed and discussed

This paper addresses the vibration mode shape measurement technique utilizing a Continuous Scanning Laser Doppler Vibrometer (CSLDV). The continuous scanning capability is added to the conventional discrete Laser Doppler Vibrometer by reflecting the laser beams on the surface of the object using two oscillating mirrors. The bow scanning resulted from the proposed scanning method is eliminated by feedback control. The velocity output signal from the CSLDV is modulated to give the spatial velocity distribution in terms of coefficients which are obtained from the Fast Fourier Transformation of the time dependent velocity signal. Using the Chebyshev series form, the analysis of the vibration mode shape techniques for straight Bine scanning and 2 dimensional scanning are presented and discussed. The performance of the proposed SLDV is presented using the experimental results of the vibration mode shape of a plate

Development of a Measuring Method for Dynamic Contact Forces between a Pantograph and a Contact WireA new method of dynamic contact force measurement between a pantograph and a contact wire is proposed in this paper The method does not require design modification of an original pantograph in order to install sensors such as load cells. Contact forces can be expressed as the sum of vertical shear forces at the support points and inertial forces. Using speciallydesigned strain gage rosettes. vertical shear forces at the supported points can be measured without noise mixing and thermal effects. In order to obtain contact forces from shear forces, 3 inertial force compansation methods are proposed and compared in this paper. By validation process, the new proposed measurement method is verified to be applicable to the online current collection test.

This paper proposes wireless fan system as noise measurement system. It is easy to combine measurement system(Hardware) and analytic system(software) to the Wireless tan system. Thus wireless fan system can be applied to noise mapping system and noise monitoring system. This paper show noise measurement experiment and result using wireless lan system.

Vibration experiments have been performed to observe the analytic characteristics of power How finite element method(PFFEM) for the reinforced cylindrical structure. For this, the vibration experimental results are compared with the numerical solutions obtained by PFFEM in mediumtohigh frequency ranges. Input Power into the experimental structure is measured using the impedance head adhered to the exciter, and that input power is used for the vibration analysis. Using the developed PFFEM program(PFADS), the reinforced cylindrical structure modeled by beam and plate elements is analyzed, and very reliable results for PFFEM are obtained by the comparisons of the experimental results.

Equivalent volume estimation of the coupler and two coupled microphones has a key role in standard microphone pressure calibration. The equivalent volume of the microphone is determined by the dynamic characteristics of the diaphragm system and front cavity. Therefore the modal parameters of diaphragm system  natural frequency and damping fatter  should be measured explicitly for the estimation of the equivalent volume. The diaphragm system is composed of the vibrating diaphragm, back slit behind diaphragm, pressure equalization vent, and front cavity which are acoustically coupled. In the measurement, the electrostatic actuator was used to excite the system with the swept sine, and the frequency response was obtained. The close actuator in front of the diaphragm must influence the radiation impedance of the system, and then the modal parameters. From the measured frequency response, the natural frequency and the damping factor could be estimated with the Complex exponential method based on the Prony model and the zero crossing real and imaginary plot.

The bending vibration and thermal flutter instability of spacecraft booms modeled as circular thinwalled beams of closed crosssection and subjected to thermal radiation loading is investigated in this paper. Thermally induced vibration response characteristics of a composite thin walled beam exhibiting the circumferantially uniform system(CUS) configuration are exploited in connection with the structural flapwise bendinglagwise bending coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. The numerical simulations display deflection timehistory as a function of the plyangle of fibers of the composite materials, damping factor, incident angle of solar heat flux, as well as the boundary of the thermal flutter instability domain. The adaptive control are provided by a system of piezoelectric devices whose sensing and actuating functions are combined and that an bonded or embedded into the host structure.

The coupled finite/boundary element method is used in numerical analysis for acoustic radiation from the vibration of rectangular composite plate which is simply supported. This analysis is validated using the Wallace equation for an isotropic plate. Active control of sound fields has been carried out using 3 pairs of piezoelectric sensor/actuator and a pair of viscoelastic material by passive constrained layer damping treatment. The results show that the optimal placement of piezoelectric sensor/actuator and VE patch is required to control the sound fields from a vibrating composite plate.

This paper presents the temperaturedependent hysteresis identification of an electrorheological (ER) fluid under various operating temperatures using the Preisach model. As a first step, polymethylaniline (PMA) particles are prepared and mixed with silicone oil to make an ER fluid. A couette type electroviscometer is then employed to obtain the fielddependent shear stress. In order to show the suitability of the Preisach model to predict a physical hysteresis phenomenon of the ER fluid, two significant properties; the minor loop property and the wipingout property are experimentally examined under three dominant temperature conditions. Subsequently, the Preisach model fur the PMAbased ER fluid is identified using experimental first order descending (FOD) curves. The effectiveness of the identified hysteresis model is verified in the time domain by comparing the predicted fielddependent shear stress with the measured one under the both specified and unspecified temperatures. In addition, the hysteresis model proposed in this work is compared to Bingham model.

The control performance of a vehicle installed with an MR(magnetorheological) fluidbased damper is investigated on the basis of HerschelBulkley shear model. Generally, most of MR fluid damper has been analyzed based on a simple Binghamplastic shear model. However, the Binghamplastic shear model can not well describe the behavior of the damper on the condition of high velocity and high current field input. Therefore, in this study, the HerschelBulkley shear model in which the constant postyield plastic viscosity in Bingham model is replaced with a power law model dependent on shear rate is used to assess control performance of a vehicle with MR fluid damper suspension system. This study deals with a twodegreeoffreedom suspension using the MR fluid damper for a quarter car model. The response for the bump input to identify the fastness of MR fluid damper embedded skyhook controller and requested magnetic field are investigated.

Preliminary test for the design and construction of a tuned dynamic absorber is a conducted. Proposed tuned dynamic absorber is a cantilevered beam type, and is supposed to adjust its natural frequency according to the changing operation condition of the primary system. The modal mass of the dynamic absorber is the easiest to control, therefore, the position of the attached mass of the dynamic absorber is considered as the main design parameter of the absorber. The effect of the dynamic absorber is experimentally verified under various operation conditions of the primary system.

본 논문은 부유식 석유 저장 하역 선박(FSO)의 소음 특성 및 해석 기법에 관한 것이다. FSO의 선실 소음 수준은 일반 상선과는 달리 선실 내부에 있는 소음원 이외에도 topside에 있는 각종 소음원들의 영향을 크게 받는다. 따라서, topside에 있는 각종 소음원들이 선실의 소음수준에 미치는 영향을 정확히 평가하는 것이 중요하다. 일반적으로 FSO의 소음해석은 옥외 및 선실 소음 해석으로 구분하여 수행한다. 본 논문에서는 topside에 있는 각종 소음원들의 공기음 전파 특성 해석은 ISO 9613에 근거한 프로그램을 이용하였고, 고체음 전파 특성은 파워 흐름 해석법을 이용하였다. 또한 선실 소음 해석은 통계적 에너지 해석법(SEA)을 이용하였으며, 해석 결과로부터 높은 소음 수준이 우려되는 구역에 대한 방음 대책을 제시하였다. 위의 선실 소음 해석 결과는 향후 FSO의 topside에 있는 각종 소음원들에 의한 선실의 소음 해석 기법 정립에 기여할 것으로 기대된다.

When a flow passes a series of parallel ones, vortexes will be formed in the wake after the cylinder. This paper treats the problems of vibration and noise in tube bank of gas flow duct of heat exchanger thermal suppling boiler in combine cycle thermal power plants. The boiler burner type has recently been changed to low Nox burner and begun commercial operation. After more load up operation then 70%, high level noise and vibration were generated at gas flow duct of heat exchanger.

This paper is the experimental study to estimate the influence of various design parameters on the performance of mufflers with perforated tubes and throughflow partitions. Muffler types considered in the present work include throughflow chamber, throughflow chamber with partition, and crossflow chamber. The influences of the design parameters on the performance of the mufflers can be outlined as follows. In the case of the throughf]ow type mufflers, increasing the tube thickness and the hole diameter of the perforated tubes does not change the maximum value of the transmission loss but decrease the cutoff frequency. In the case of the throughflow with partitions type mufflers, it is shown that combining a fe w short chambers and long chambers can modify the frequency locations of the resonance frequencies to optimize the performance of the mufflers. For the case of the crossflow type mufflers, it is shown that the transmission loss of the mufflers is mainly affected by the lower porosity when the porosities are different in both sides of the plug. Overall, it is shown that performance of the throughflow type with partition type mufflers is excellent in the lower frequency region, where the crossflow type mufflers have better performance in the higher frequency region.

Human's vision is mostly confined to the area in the front and we, humans heavily depend on the sense of hearing to gather information in areas out of our sight. Thus, the virtual reality system consisting of the 3D sound effect gives the user a much better sense of reality than the system without the sound effect. Virtual 3D sound technology has mainly been researched with binaural system. The conventional binaural sound systems reproduce the desired sound at two arbitrary points using two channels in 3D space. Head movement of listener might be change the nominal acoustic transfer function and deteriorate the performance of 3D sound system based on loudspeakers that needs a crosstalk canceller. In this paper, low kinds of sensitivity functions of sphere HRTF are derived to investigate the effect of head movement on HRTF in 3D sound system. Changes of HRTF caused by rotational and translational motion of head are obtained as we calculate the derivatives of HRTF with respect to angle and distance.

Statistical energy method is widely used for the prediction of vibrational and acoustical behavior of complex structures, such as ship building and automobile in mid, high frequency ranges. However. in order to convince this SEA result, it is important to verify estimated SEA parameters, e. g. modal density, energy in each subsystem, damping loss factor, coupling loss factor. with possible other method. For modal density parameter, the experimental estimations via Experimental Modal Analysis are checked with those from finite element method for both beam plate and plateplate cans. Loss factors are calculated by Lyon's simple method for the two subsystem. finally. modal experiments are carried out by varying the mass added on the junction of two subsystem for the purpose of investigating the influence on the coupling loss factor's behavior.

A parallelized topology optimization is applied to the design of a DVDpickup bobbin, for which the design objective is to maximize the fundamental frequency within a given mass limit. Unlike the existing serial topology optimization, the present method can deal with a large number of design variables, and thus can yield practical and realistic results. The structural membersizing filter is also employed to control the topological complexity of the optimized bobbin structure.

Since rolling (Radial AC Tilt) motion in Optical Pickup Actuator causes RF signal degradation, many researches have been done to find out how to reduce rolling degree. This paper aims to introduce two methods of reducing rolling degree with their theoretical concepts and experimental results. First method rearranges magnetic circuit and the other one adjusts the proportion of the distances among mass center, actuating center and supporting center.

In this study, we suggested a slimtype actuator that can be controlled in radial direction for compensating coma aberration in highcapacity optical storage devices. To deal successfully with narrow space in slimtype optical pickup for notebook pc device, additional yokes for tilting motion are integrated into main yoke of the actuator. And the location of tilting coils is determined for massb3lancing effect to achieve optimal configuration for high driving sensitivity. We also suggested new concept of lens holder to guarantee excellent stability of control system by enhancing the gain margin at secondary resonant frequency. The concept was realized by forming damping sections in the lens holder, which prevent vibrational energy from transferring to lens. An exclusive measurement system was newly developed for fast and precise measurement of dynamic characteristics of actuators and utilized for the practical use. We hope to make good use of this system also in time to come.

There has been lower the tilt margin by the increase of coma aberration due to the reduction of wavelength and the increase of numerical aperture for high density recording. The RF signal degradation is increased as the decrease of tilt margin. To compensate the tilt margin, the optical pickup actuator for highspeed CD/DVD rewritable system should be able to drive the radialtilt motion. We announce that the 3axis drive actuator for highspeed CD/DVD rewritable system. And what was more, the DC/AC sensitivities of this actuator are suitable fur the lowspeed playability, the highspeed readability and the highspeed rewritability.

This paper presents a piezoelectric shunt methodology to reduce unwanted vibration of optical disk drive(O.D.D.). After briefly investigating a secondorder mechanical vibration absorber model, the O.D.D. structure is incorporated with the piezoelectric shunt circuit. In order to evaluate feasibility of multimode passive damping of the structure, admittance measurement of piezoceramic is undertaken. The parameters are optimally tuned by admittance measurement results on the basis of the circuit model and displacement transmissibility is evaluated. To verify validity of admittance measurement result, experiment is performed and vibration reduction is achieved at two different modes.

A portable mould oscillation analyzer with an integrated computer, developed by POSCO, records the movement of the mould in every spatial direction. The system uses the gap sensors to measure the mould movement (displacement) in two horizontal directions according to the mould narrow and broad faces and the vertical strokes in the four corners of mould. The gap sensor is a noncontacting minute displacementmeasuring device using the principle of high frequency eddy current loss. The mould oscillation diagnostic system integrates the gap sensors, their converters and the industrial portable computer with plugin data acquisition boards. In an own expert module, which is included in the diagnosis program, one can obtain much information about the mould oscillation equipment.

Rubber isolator has properties that can adjust easily stiffness and can be formed various shape. Also, it has high damping and is effective about structureborne noise at high frequency range, So, rubber mount has widely used to isolate vibration at industrial equipment and construction field. However, rubber material is nonlinear and require enough consideration about shape factor whenever it is designed. The purpose of this paper is to develop conical rubber mount using compression and shear elasticity. The first, the dimension of mount is calculated by theoretical analysis considering design condition and static characteristics have been analyzed by FEM method. In addition, the fatigue test of rubber mount is performed to get reliability for product life and dynamic stiffness test is executed to get dynamic magnification factor. Finally, transmissibility test of vibration isolator has been carried out to suggest normal quantity data about vibration isolation.

Analyzing acousticstructural systems such as automobiles and aircraft the FRFbased substructuring method is one of the most powerful tools. In this paper, an optimization procedure far the engine mount system of passenger car has been presented using the design sensitivity analysis based on the multidomain FRFbased substructuring formulation. The proposed method is applied to an optimization problem of the engine mount system, of which objective is to minimize the interior sound over the concerned rpm range. The design variables selected are the stiffnesses of the engine mounts and bushes. Plugging the gradient information calculated by the proposed method into nonlinear optimization software, we can obtain the optimal stiffnesses of the engine mounts and bushings through design iterations. The optimized interior noise in the passenger car shows that the proposed method is very useful in the realistic situation.

In this paper, numerical method of evaluating the influence of Dual Mass Flywheel(DMFW) to the torsional vibration of the automotive power train system is developed. And we applied the procedure to the currently being developed HMC's DMFW attached to an FF car to find out the best performance characteristics during the Tipin/Tipout operating condition. In doing this we compared the numerical results with the experimental results and Performed Parametric studies. We find out that the torsional vibrational characteristics of power train system can be significantly improved when we optimally choose DMFW, and the developed numerical procedure could be used as valuable tools in developing new DMFW.

This paper is concerned with the development of webbased engineering calculation program using Javascript. Recently, various techniques are developed based on the advance of the internet environment. The Javascript can be used in the client PC without any interpreter which is necessary in Java. Simple formula can be easily constructed using the Javascript and the results can be readily available without any playing. In this study, we demonstrated the method of constructing engineering web useful for engineers.

The main purpose of this paper is to determine the dynamic optimal shapes of tapered column with constant volume. The linear, parabolic and sinusoidal tapers with the regular polygon crosssection are considered, whose material volume and span length are always held constant. The ordinary differential equation including the effect of axial load is applied to calculate the natural frequencies. The RungeKutta method and RegulaFalsi methods are used to integrate the differential equation and compute the frequencies, respectively. Then the dynamic optimal shape whose lowest natural frequency is highest is determined by reading the critical value of the frequency versus section ratio curve plotted by the frequency data. In the numerical examples, the tapered columns are analysed and the numerical result of this study are shown in table and figures.

A numerical method is presented to obtain natural frequencies and mode shapes of tapered beams with static deflections due to selfweight. The differential equation governing the free vibrations of beam taken into account the static deflection due to selfweight is derived and solved numerically. The hingedhinged, clampedclamped and clampedhinged and clampedfree end constraints are applied in the numerical examples. As the numerical results, the lowest three natural frequencies versus distributed slenderness ratio and section ratio are reported in figures. And for the comparison purpose, the typical mode shapes with the effects of static deflection are presented in figures.

The differential equations governing inplane free vibrations of stepped circular arcs, including the effects of axial deformation, rotatory inertia and shear deformation, are derived and solved numerically to obtain frequencies and mode shapes. Numerical results are calculated for the clampedclamped symmetric and unsymmetric circular arcs with thickness varying in a discontinuous fashion. The lowest four natural frequencies and mode shapes are presented over a range of nondimensional system parameters: the subtended angle, the slenderness ratio, the section ratio and the ratio of discontinuous section.

The free vibration of partially embedded piles is investigated. The pile model is based on the BernoulliEuler beam theory and the soil is idealized as a Winkler model for mathematical simplicity. The governing differential equation for the free vibrations of such members is solved numerically The piles with one typical end constraint (clamped/hinged/free) and the other hinged end with rotational spring are applied in numerical examples. The lowest three natural frequencies are calculated over a range of nondimensional system parameters: the rotational spring parameter, the relative stiffness and the embedded ratio.

KSRIII(Korea Sounding Rocket  III), which is being developed by Space Technology R&D Division of KARI(Korea Aerospace Research Institute) will be launched in late 2002. It is a threestage, liquid propellant rocket which can reach 250 km altitude and will carry out observation of ozone layer and scientific experiments, such as microgravity experiment, and atmospheric measurement. KSRIII is believed to be an intermediate to the launch vehicle capable of carrying a satellite to its orbit. Space Test Department of KARI performed GVT(Ground Vibration Test) fer KSRIII EM at Rocket Test Building of KARI. GVT is very important for predicting the behavior of rocket in its operation, developing flight control program and performing aerodynamic analysis. This paper gives an introduction of rocket GVT configuration and information on test procedures, techniques and results of It. In this test. to simulate freefree condition, test object hung in the air laterally by 4 bungee cords specially devised. For the excitation of test object, pure random signal by two electromagnetic shakers was used and total 22 frequency response functions were achieved. Polyreference parameter estimation was performed to identify the modal parameters with MIMO(MultiInputMultiOutput) method. As the result of the test, low frequency mode shapes and modal parameters below 60Hz were identified

We report the number of calibration and test for acoustic field which were conducted in KRISS between the year of 1990 and 2001. The items contain sound level meter and calibrator for calibration and sound absorption coefficient, transmission loss, sound pressure level of siren, sound pressure level and power of acoustic instrument and relative accessories for test. The data show that the number of them have been increased continuously.

In this paper. the correlation among vibration. wear and temperature are experimentally investigated when rubbing is caused by static and dynamic forces. Each measurement reflects the characteristics of the system and is useful in detecting and diagnosing the current status of rotating machinery. For experiment, the rotor system with lubricating equipment such as trochoid pump, oil tank and wear detecting sensor is implemented to simulate the rubbing condition. Experimental results show that significant change in wear quantity can be notified when vibration signal is changed by rubbing. The results can be applied to system monitoring and fault diagnosis in rotating machinery.

The nonlinear vibration of the CRT shadow mask is analyzed in consideration of the Vshaped tension distribution and the effect of wire impact damping. The reduced order FEM model of the shadow mask is obtained from dynamic condensation for the mass and stiffness matrices. Damping wire is modeled using the lumped parameter method to effectively describe its contact interactions with the shadow mask. The nonlinear contactimpact model is composed of spring and damper elements, of which parameters are determined from the Hertzian contact theory and the restitution coefficient, respectively. The analysis model of the shadow mask with damping wires is experimentally verified through impact tests of shadow masks performed in a vacuum chamber. Using the validated analysis model of the shadow mask with damping wires, the‘design of experiments’technique is applied to search fur the optimal damping wire configuration so that the vibration attenuation of the shadow mask is maximized.

The vibration measurement of the AC motor, the most typically used vibration source, is essential to evaluate the causes of unexpected excessive vibration in many mechanical systems. The motor contributes to excite the resonance of the mechanical systems, and in turn tilt amplified vibration of the mechanical parts cause the motor to vibrate severely. Without the vibration evaluation on the motor itself, it is time consuming to solve the vibration problems. This paper deals the vibration measurement method for the AC motor itself.

We tested the natural frequency for the 1st moving blades of a steam turbine in general power plants, carried out the modal test of the blade groups each natural frequency. By this test results, we identified the resonance results largely in damaging the blades. We can predict damage probability for the blade groups and change state of material property by using the result of this study.

This research is concerned with the study of an active vibration absorber using piezoelectric actuators and Isolation pad. The active isolation system consists of 4pairs of PZT actuators bonded on the surface of an aluminum plate and a passive damping material. The active system is connected to the passive system in series. The Signals of the accelerometers are fed into the PZT actuator through the controller. We proposed a new control technique which can deal with the shock as well as the base excitation in this study. The Positive Acceleration Feedback(PAE) tuned to the natural frequency of the vibration isolation system is used to suppress the vibrations caused by the shock using the top accelerometer signal. The Negative Acceleration Feedback (NAF) based on the base acceleration signal is used to counteract the base motion. Experimental results show that the proposed active vibration isolation system can suppress vibrations.

A Study of Dynamic Modeling and Experimental Prove for Plate with Piezoceramic Sensors and ActuatorsThis paper is concerned with the experiments on the dynamic characteristics and modeling of plate with piezoceramic sensors and actuators. The experimental frequency response plots can be used to verify the theoretical modeling. Theoretical analysis will follow.

This paper presents hydraulic model which can capture the hysteric damping force behavior of ER damper. A flow mode rue ER damper is manufactured, and its fielddependent damping forces are measured. Newly proposed hydraulic model which derived from physical hydromechanical parameters of ER damper are conventional Bingham model are investigated to represent the fielddependent damping force characteristics of ER damper. After principal parameters of two models are estimated from the measured damping forces data, the force vs velocity hysteresis cycles are then reconstructed. The results show that the proposed hydraulic model can capture the hysteresis behavior of ER damper accurately.

Recently, the advent of electroactive papers (EAPap) actuators has been reported. In this paper, the possibility of the actuators is demonstrated. EAPap is a paper that produces large displacement with small force under an electrical excitation. EAPap is made with a chemically treated paper by constructing thin electrodes on both sides of the paper. When electrical voltage is applied on the electrodes the EAPap produces bending displacement. To improve the bending performance of EAPap, different paper fiberssoftwood, hardwood, bacteria cellulose, cellophane, carbon mixture paper, electrolyte containing paper and Korean traditional paper, in conjunction with additive chemicals were tested. Two attempts were made to construct the electrodes: the direct use of aluminum foil and the gold sputtering technique. It was found that a cellophane paper exhibits a remarkable bending performance. When 2MV/m of excitation voltage was applied on the paper actuator, more than 3mm of tip displacement was observed out of the 30 mm long paper beam. This is quite low excitation voltage compared to that of other EAPs. The actuation principle of electroactive paper (EAPap) and possible applications are addressed.

To reduce unwanted vibrations in war ship which may be transmitted through underwater path, it is required to use high damping mounts to isolate the vibration. In this work, the beam structure with squeeze mode ER mount is proposed and response characteristics such as acceleration and force transmissibility of beam with constant voltage and optimal controller are experimentally analyzed. The controller is empirically realized and control responses are evaluated in frequency domains. Experiments show vibration reduction capability of squeeze mode ER mount.

AN EMBEDDED PCBASED HARDWARE AND SOFTWARE SYSTEM HAS BEEN DEVELOPED TO AUTOMATE THE DATA ACQUISITION AND ANALYSIS OF BRAKE SQUEAL. THE DEVELOPED SYSTEM INTEGRATES ADVANCED SIGNAL CONDITIONING HARDWARE AND SOFTWARE TO ACQUIRE BRAKE NOISE AND VIBRATION DATA RAPIDLY, CONSISTENTLY AND OBJECTIVELY. A SPECIAL PEAKPICKING ALGORITHM IS USED TO DETERMINE WHEN BRAKE NOISE OCCURS DURING A STOP EVENT AND ACTUALLY DEFINE FROM WHICH CORNER OF THE VEHICLE IT ORIGINATES. A SPECIAL NOISERATING TABLE IS FEATURED TO ENABLE THE USER TO DEVELOP CORRELATIONS BETWEEN DRIVER RATINGS AND OBJECTIVE MEASUREMENTS.

This paper studies on the noise reduction for a small automobile DC Motor (a window motor) using the 6 sigma process. The application of 6 sigma process suggested reliable and valuable statistical data for the quality of the DC motor at the production line. In the measurement step in 6 sigma process, the FMEA(Failure Mode Effect Analysis) were used for the detection of noise sources. The application of 6 sigma process gave not only the improving method for the quality of the DC motor but also the confidence of improvement itself since it was done on the basis of the test results for a number of DC motors at the production line. Consequently the 6 sigma process was proved very effective for the noise reduction at the production line.

자동차 및 유체기계의 흡기계나 배기계에 사용되는 소음기의 음향성능은 전달손실로 기계성능은 배압으로 표현된다. 유체가 흐르는 관 사이의 임피던스 부정합을 이용하는 반사형 소음기의 경우, 내부 유로에 천공을 주어 음향감쇠를 시키거나 유동을 안정시키는 경우가 많다. 본 연구에서는 동심관형 공명기의 내부 관에 존재하는 천공의 분포 양상이 소음기의 전달손실과 배압에 미치는 영향을 실험을 통하여 고찰하였다. 내부관의 평균 천공율은 일정하지만 길이 방향을 따라서 천공율이 변하는 다섯가지의 공명기에 대한 실험을 수행하고, 성능에 미치는 영향을 살펴보았다. 전달손실은 천공요소의 임피던스 모델을 고려하여 예측한 결과와 비교하였고, 측정된 배압은 모의 해석 결과와 비교하였다. 분석 결과, 천공율이 점점 작아지는 분포나, 작았다가 커진후 다시 작아지는 형태의 분포를 가질 경우, 배압 측면에서 매우 유리하고, 음향 전달손실도 큰 차이가 없음을 밝혔다.

Multireference, scanbased Acoustical Holography is a useful measurement technique when insufficient microphones are available to measure a complete hologram at once. When the sound sources are stationary, the whole hologram can be constructed by joining together subholograms captured using a relatively small scan array. Here that approach is extended by the development of a formulation that explicitly includes the acoustical transfer functions between the reference microphones and the scanning microphones. Based on those expressions, a compensation procedure of spectral variance due to sourcenonstationarity is proposed. It has been verified both numerically and experimentally that this procedure can help suppress spatially distributed noise caused by the source level nonstationarity that is always present in a measurement.

ANC technic can overcome the limited performance of passive noise control at the low frequency range. But it has the local quiet control region in general. In this paper, it is discussed that the global noise control in a circular duct using a ring type smart foam and a porous material. LMS algorithm and RLS algorithm are used to find optimal orders of cancellation path. Experiments are performed to compare the efficiency of RLS algorithm with that of LMS algorithm.

This paper presents an optimum design of herringbone grooved journal bearing for spindle motor of hard disk drive (HDD) system. In addition to the conventional “rectangular” groove, various groove profiles are designed. The stiffness and damping coefficients of the oil film and frictional torque are calculated and compared for tile various groove profiles. The “circular”, “valley”, and “reversed saw tooth” grooves do not produce high direct stiffness, since they partly increase the groove depths in the direction of lubricant flow, causing to reduce the pumping action of the bearing. The maximum direct stiffness can be obtained by the “rectangular”, “saw tooth”, and “step” grooves. With the same cross sectional area of the grooves, these three grooves have the same maximum stiffness, damping coefficients, and frictional torque. Among these recommendable grooves, the saw tooth groove may keep its original profile for long, enduring metaltometal contact during startup and shutdown.

This research demonstrates the transient response of a head disk assembly subjected to a halfsine shock pulse in the axial direction. In case of disk analysis, the numerical method presented by Barasch and Chen is used. Galerkin method is used with mode shape by numerical method. headsuspension system is modeled by the cantilever in order to get simulation results. Simulation results about total system of HDA are calculated by RungeKutta method.

The role of disk clamp is to fasten disks to motor and to prevent the slip of disks during operation. This paper examined the effects of the design parameters of disk clamp  thickness, contact radius and crosssectional shape on the clamping force and circumferential stress distribution of disk. The large stress variation in circumferential direction results in large disk waveness and will increase repeatable runout (RRO) finally. The disk clampdiskdisk spacer system is modeled and the FE analysis is performed by ANSYS. The disk clamp with large contact radius shows more uniform stress distribution than the one with small contact radius and the stiffness variation around circumferential direct ion or the addition of the bending sect ion can make stress distribution uniform.

Nowadays since the customers of HDD's are interested in their noise levels in addition to their primary performances such as their average access time, capacity, HDD manufacturers make efforts on reducing the noise. The works to reduce noise are usually based on the measurable physical quantities such as SPL or acoustic intensity level. However, since the HDD noise is Judged by human beings, the basis of noise reduction should be human sensations. In this paper, the noise levels of various HDD's are evaluated by the human jury test to find a relationship between the physical quantities used for noise control and the human sensations of noise. Discrepancies are found in the judgments by the human beings and by the physical quantities. The loudness level, a psychoacoustic variable, is used to solve the discrepancy.

Although the magnetostrictive sensors have received much attention in recent years. the investigations on the selection of a desired mode have not been reported. The purpose of this investigation is to present a technique to select a desired mode in a solid ferromagnetic cylinder using a noncontact magnetostrictive sensor. To achieve this goal. we propose new bias magnet configurations to select longitudinal and flexural waves. A few experimental results confirm the validity of the present investigation.

A magnetostrictive sensor is used to measure stress waves propagating in a ferromagnetic cylinder without physical contact. The performance of a magnetostrictive sensor is affected most significantly by the bias magnetic field applied around the measurement location. The goal of this paper is to carry out the topology optimization of the bias magnet and yoke assembly to maximize the sensor output for traveling bending waves. We will use the multiresolution topology optimization strategy to find the assembly of the bias magnet and the yoke that is easy to realize. The effectiveness of the present design is confirmed by an actual measurement of the sensor signal with the proposed bias magnet and yoke configuration.

Crosstalk cancellation, inverse filter design or deconvolution in a generic term, is a vital process for a virtual sound realization in the stereo sound reproduction system. Most, if not all, of the design algorithms available for the inverse filter are based on a linearized model of the real physical plant. The result of such a plantbased design method, which may be referred to here as the indirect method, is biased due to both modelling and inversion errors. This paper presents a novel direct crosstalk cancellation method that may be free from the inversion error. The direct method can directly models the inverse filter by a suitable rearrangement of the input and output ports of the original plant so that no inversion is required here. Advantages are discussed with various experiments in an anechoic chamber using a PC soundcard. Binaural reproduction tests conducted showed that the conventional indirect method yields about 8 % reproduction performance error on both ear positions, whereas the direct method offers about 3 %.

A lot of rotating machines are being used in the industrial world and electric motor and generator take the most part of it. When it comes to the electric motor and generator, we can not help thinking about the eddy current because it brings a loss of electric and can be a important reason of the heat generation. To attenuate eddy current. laminated silicon steel sheets are being used in general. Especially, laminated rotor is being used for rotating part of the electric motor and generator and it decreases electrical loss and heat generation but we can be faced with another problem. In general, most of the motor and generator can be normally operated under 3600rpm because they are designed to have the first critical speed more than that speed. But nowadays, they should be operated more than the first critical speed as usual with the trend of high speed. large scale and high precision in industrial world. The critical speed can be determined from the inertia and stiffness for the rotor and bearing of rotating systems. The laminated rotor stiffness can be hardly determined because it can be derived a lot factors for instance rotor material and shape. lamination material and shape. insulation material. lamination force and so on. In this paper, the change of the natural frequency of the motor was examined with the change of the lamination force as an experimental method.

A case history is presented pertaining to piping fatigue by vibrations and sustain stresses in the hydraulic oil supply system for control valves in a 200MW thermal power plant that ultimately resulted in pipe rupture. The Piping was designed to supply the hydraulic oil for turbine control valves. Testing and analyses were performed on the system to develop solution to repair work on failures.

This study has measured and evaluated the sound insulation of building elements of the hotel near airport. That measurement was made in both the actual site and laboratory. The differences of sound insulation performance in between granite and double glass were measured. Moreover, the difference of sound insulation was analyzed. For the measurement, this study has tried several methodologies, and analyzed the differences respectively. The results from this analysis were applied to produce a design guides for sound insulation to prevent external noise and to make more silent indoor space which satisfied the standard rate of noise.

Recently, the research and discussion to set up the evaluation standard for nor impact noises in multistory residential buildings has been vividly carried out In Korea. Therefore, the correlation between the methods and auditory responses was investigated through this research to investigate the applicability of the L index evaluation method and the reverse A characteristics evaluation method that are listed in JIS A 1419 since Japanese circumstance are similar to Korean after evaluating the duality of Korean multistory residential buildings. As a result, it was found that the correlation between the value resulted from L index evaluation and the value from reverse A characteristics evaluation is high. In addition, it was also revealed that human responses to each Impacter was similar. Consequently, it is considered th:31 the tendency about the two methods would be similar.

The purpose of this study was to analyze the characteristics of a new heavy weight impactor, the Rubber Ball. Until now Bangmachine has been used to measure the heavy impact noise in accordance with JIS A 14181. However, various kinds of examination methods have been needed to make an objective observation of insulation capacity for floor impact noises. Two types of experiments were undertaken. First, the experiment about noise was carried out about an apartment building in actual living condition. Then. vibration noises from the impactors were analyzed. The results of this study were as follows : the result of experiment carried out with bonded area of bail was closer to practical experiment than that of non bonded area. In addition, the result about bonded area of ball was more similar to the result which is claimed by H. Tachibana than that about non bonded area. Moreover, it was found that Rubber Ball has more similar vibration characteristics to the real impact noise source than Bangmachine.

The floor impact noise in apartment buildings has been known as the most sensitively recognized environmental noise. Therefore. inhabitants perceptual evaluation of floor impact noises was investigated by a questionnaire survey. It was found that the respondents perceive the floor impact noises from the upper nor as a constant noise level. However, if there is any child on the upper floor. the respondents felt Its noise as a harshly grating level. It was also found that the larger the respondents house is. the higher their wanted level of noise isolation is. Moreover, it was revealed that the main source of the floor impact noise from the upper floor is a child at the age from six to seven. The results could be used as fundamental data for the research on impact sources and new regulations that fit to Korean perceptual aspects and characteristics.

In development of an advanced bicycle simulator, the investigation of the interactions between bicycle and rider during cycling is paramount important because bicycle is a twowheeled humanpowered vehicle. Tn this work, the tilt stability. among various interactions, of bicycling is investigated experimentally, In the experiments, the tilt angles of the bicycle, riders body and head are measured, as the riding p;1th and the speed are varied. Subjects are asked to ride along four typical paths on rigid flat ground : the straight, Ccurved, Scurved and circle paths. The results from extensive experiments with different subjects can be summarized as : 1) The tilt angles of bicycle and rider are almost out of phase during pedaling along the straight path. 2) The bicycle tilt angle is nearly proportional to the square of bicycle speed for the straight and curved paths, and to the curvature for the curved paths. The head tilt angle is the biggest and the body tilt angle is the smallest for the straight path, but the tendency is reversed for the Ccurved path. During the curve maneuvering, the rider's head tends to tilt by less than 40% of the bicycle tilt angle.

This study is to evaluate the risk perception of noise of the groundcrews in the Korean airbases who exposed to noise of jet plane. 1148 groundcrews and 231 pilots of 2 airbases participated in this study. The questionnaires of risk perception with visual analogue scale were completed by the participants. For comparison, the perception of other risks such as beef contaminated with dioxin, AIDS, lung cancer, otitis media, shigellosis, driving, drinking, and smoking were also included in the questionnaire of risk perception. The results of this study suggested the necessity of risk communication about noise and activation of effective hearing conservation program in the Korean airforce.

가청범위의 주파수보다 낮은 소리, 즉 초저주파음과, 가청음 중 주파수가 낮은 음을 합하여 저주파음으로 분류하기도 하는데, 대략 100Hz 이하의 주파수를 갖는 음을 가리킨다. 인간이 느끼는 저주파음에 대한 영향은 여러 범위로 조사되고 있으며 주로 청력손실과 불쾌함에 미치는 영향에 초점을 맞추고 있다.(중략)

Two problems in the measurement of 6DOF head vibration in very low frequency range were investigated in this study. One is how much error was involved in the estimation of three rotational and three translational motion at any specified point from measured 6 translational accelerations. The other is quantitative and qualitative influence of gravity on DC and AC component of the estimated accelerations in 6 degree of freedom, which were derived from pickups fixed on a helmet. In the study the effect of nonlinear terms on the estimation of 6 degree of freedom accelerations was negligible but gravity effect must be considered carefully.

The paper considers acoustic analysis of the shock absorbing muffler within a rotary compressor. The internal space of the compressor is modelled as a combination of cavities and pipes. A simple onedimensional impedance approach is used fur the acoustic analysis in the low frequency range, with ignoring the effects of gas flow and temperature gradients that are closely related to power efficiency of the compressor. Using the similarity between the vibration isolator and the shock absorbing muffler, the source strength transmissibility is newly proposed as a performance measure of the muffler and its validity is supported by power analysis. Some Important muffler design rules obtained are; (1) a muffler cavity and its opening throat should be used as a pair, (2) a long thin throat is desirable for high frequency noise isolation, (3) a large muffler cavity should be used with care since it shortens the working frequency range of the muffler. The rules were applied to redesign a compressor muffler currently in use, and a significant improvement was achieved by simply attaching a throat to the outlet holes of the muffler.

The vacuum cleaner that has no dust bag generates very high level annoying noise. The dominant noise source is the 2
$\^$ nd/ BPF tone of the rotating impeller. In order to reduce the noise, we identify the acoustic characteristics and reduce the noise of the vacuum cleaner and centrifugal fan. The resonance phenomenon is observed in blade passages and we found out that the resonance frequency is very close to the 2$\^$ nd/ BPF. In order to reduce this highlevel peak noise, new impeller is designed in this paper. The trailing edge of new impeller is inclined and this makes the flow interactions between the rotating impeller and the stationary diffuser vane occurs with some phase shift. The performance of new impeller is similar to the old one but the overall SPL is reduced about 3.6dBA. The SPL of BPF is reduced about 6dBA and 2$\^$ nd/ BPF is reduced about 20dBA. The vacuum cleaner, which uses newly developed centrifugal fan, generate more comfortable noise than the old model and the strong tonal sound was dramatically reduced. 
In this paper, a successful noise reduction of an axial flow fan for a refrigerator is presented. The vortex sheet generated at the blade tip of fan was suppressed by changing the shape of the tip. The structure of vortex sheet and detailed flow pattern around the fan were studied by twodimensional LDV(LaserDoppler Velocimetry). Effective ways to work out the result as mentioned above are to make the tip of the blade varied in thickness and to have elliptical shapes. To seek the optimal value fur the shape of new fan, several cases were examined. Through the application of the methods, the refrigerator became less noisy by 3.8 dB(A) in terms of airborne noise produced only by the axial flow fan compared to the current one.

In this paper, new concept, low noise axial fan was developed. The fan was designed to operate at highpressure condition inside the refrigerator. This fan  we call it Alpha fan  has small turbo blades at trailing edge of axial fan. These turbo blades make alpha fan operate at high pressure and low noise condition. In order to find out the optimal value of design parameters, 6sigma method was used. The design parameters are ratio between inner and outer diameter, Height, Install angle and Install position of turbo blade. Optimal value of turbo blade was found out and the noise generated from this fan is reduced about 3dB(A).

Component Mode Synthesis (CMS) is a dynamic substructuring technique to get an approximate eigensolutions of large degreeoffreedom structures divisible into several components. But, In practice. most of large structures are modeled by different teams of engineers. and their respective finite element models often require different mesh resolutions. As a result, the finite element substructure models can be nonconforming and/or incompatible. In this work, A hybrid version of component mode synthesis using a localized lagrange multiplier to treat the nonconforming mesh problem was derived. Evolution Strategies (ESs) is a stochastic numerical optimization technique and has shown a robust performance for solving deterministic problems. An ESs conducts its search by processing a population of solutions for an optimization problem based on principles from natural evolution. An optimization example for raising the first natural frequency of a plate structure using beam stiffeners was presented using hybrid component mode synthesis and robust evolution strategies (RES) optimization technique. In the example. the design variables are the positions and lengths of beam stiffeners.

일반적으로 유한요소 모델로부터 구한 해석결과는 대상 구조물의 모드 실험결과와 오차를 보인다. 이러한 오차로 인해서 유한요소 모델의 효용성에 한계가 발생하게 되면, 모델의 신뢰성을 높일 수 있도록 모델을 보정하는 절차가 필요하다. 유한요소 모델 개선은 이러한 오차를 줄이기 위해서 유한요소 모델을 변경하는 체계적인 접근법이다. 유한요소 모델에서 변경할 수 있는 매개변수의 개수는 실험결과의 개수보다 훨씬 많으므로 실험결과와 일치되는 개선된 모델의 수는 무한하다고 할 수 있다. 그러나, 개선된 유한요소 모델이 물리적 타당성을 갖도록 매개변수의 선택과 변경에 제한을 주면 초기 유한요소 모델에 비해서 실험결과와의 오차가 개선된 근사해만 존재하게 된다. 따라서, 모델 개선 과정을 통해서 구한 개선된 모델은 오차의 평가기준 또는 목적함수에 따라서 정해진 다양한 근사해 중 하나이다. 기존의 모델 개선 방법에서는 실험결과와의 오차를 나타내는 단 하나의 평가기준 또는 목적함수를 사용하고 이를 최소화하는 모델을 구한다. 최적화 결과를 얻기 전에는 사용된 평가기준이 타당한지 검토할 수 없으므로 대부분의 경우, 시행착오 방법으로 목적함수를 설정하게 된다. 본 논문에서는 이러한 문제점을 해결하기 위해서 다목적 최적화 개념을 이용한 평가기준을 소개하고 특히, 대화식 다목적 최적화 기법을 이용하여 유한요소 모델을 개선한다.

For a large structure, substructure based SDM(structural dynamics modification) method is very effective to raise its dynamic characteristics. Dividing into smaller substructures has a major advantage in the aspect of computation especially for getting sensitivities, which are in the core of SDM process. But quite often, nonmatching nodes problem occurs in the process of synthesizing substructures. The reason is that, in general, each substructure is modelled separately, then later combined together to form a entire structure model under interface constraint conditions. Without solving the nonmatching nodes problem, the substructure based SDM can not be processed. In this work, virtual node concept is introduced. Lagrange multipliers are used to enforce the interface compatibility constraint. The governing equation of whole structure is derived using hybrid variational principle. The eigenvalues of whole structure are calculated using determinant search method. The number of degrees of freedom of the eigenvalue problem can be drastically reduced to just the number of interface degree of freedom. Thus, the eigenvalue sensitivities can be easily calculated, and further SDM can be efficiently performed. Some numerical problems are tested to show the effectiveness of handling nonmatching nodes.

In this paper, a reliabilitybased design optimization method, which enables the determination of optimum design that incorporate confidence range for structures, is studied. Response surface method and Monte Carlo simulation are utilized to determine limit state function. The proposed method is applied to the Itype steel structure for reliability based optimal design.

The analytical and experimental studies on aerodynamic flutter instability of rotating disks in information storage devices are investigated. The theoretical analysis uses a fluidstructure model where the aerodynamic force on the rotating disk is represented in terms of lift and damping forces. Based on the analytical approach, it is shown that the backward natural frequency of the disk is equal to that of the case without aerodynamic effect at the flutter onset speed. In postflutter regions, the natural frequencies are larger than those in vacuum conditions without aerodynamic effect. The analytical predictions on the natural frequencies of rotating disks with/without aerodynamic effect are experimentally verified using a vacuum chamber and ASMO optical disks.

In optical disk drive(ODD), pickup actuator, which comprises a key part of an optical disk drive equipment. must be thin. compact, and high sensitive. Low tilt is also an important requirement for the actuator, since optical disks are to high density. This tilt occurs from around the axis parallel to the tangential and radial direction of the disk. The main reason of the moment is the coupling effect between focus driving system and tracking driving system. This paper analyzed tut quantity due to focusing and tracking force through coupled fields analysts with electromagnetic analysis and structural analysis.

Identification method is formulated to evaluate the dynamic characteristics of air bearings under NFR(Near Field Recording) sliders. Impulse responses and frequency response functions of NFR sliders are obtained on numerical nonlinear models including rigid motion of slider and fluid motion of air bearing under the slider. Modal parameters and system parameters are identified by modal analysis method and instrumental variable method. The parameters of sliders are utilized to evaluate the dynamic characteristics of air bearings. Also, this study shows the difference between the dynamic characteristics of NFR and HDD slides, and squeeze effect of air bearings.

As the demand for slim laptops requires ion'height optical disc drives, vibration problems of optical disc drives are of great concern. Additionally, with the decrease of a track width and a depth of focus in high density drives, studies on vibration resonance between mechanical parts become more important. From the vibration point of view, the performance of optical disc drives is closely related with the relative displacement between a disc and an objective lens which is controlled by servo mechanism. In other words, to read and write data properly, the relative displacement between an optical disc and an objective lens should be within a certain limit. The relative displacement is dependent on not only an antivibration mechanism design but also servo control capability. Good servo controls can make compensation for poor mechanisms, and vice versa. In a usual development process, robustness of the antivibration mechanism is always verified with the servo control of an objective lens. Engineers partially modify servo gain margin in case of a data reading error. This modification cannot correct the data reading error occasionally and the mechanism should be redesigned more robustly. Therefore it is necessary to verify a mechanism with respect to the possible servo gain plot. In this study we propose the experimental verification method far antivibration mechanism with respect to the existing servo gain plot. This method verifies axial vibration characteristics of optical disc drives on the basis of transmissibility. Using this method, we verified our mechanism and modified the mechanism for better antivibration characteristics.

To design engine mount system efficiently, lots of analysis works are conducted for the prediction of the dynamic behavior of a vehicle as varying design parameters of the engine mount system. Thus it is very important to choose an appropriate analysis software. Because one usually carries out different types of analysis based on relatively simple models, so using a specialized inhouse software is more effective than using several commercial softwares. In this paper a case study is introduced to develop an analysis software to design engine mount system.

The spacer grids in nuclear fuel assembly locate and align the fuel rods with respect to each other. They provide axial and lateral restraint against an excessive rod motion mainly caused by coolant flow. It is understood that each rod Is supported by multiple spacer grid. In such a case, it is important to determine spacer grid span so as to avoid resonance between the natural frequency of the fuel rods and excitation frequency. Actually dynamic characteristics of the fuel rods can be improved by assigning adequate spacer grid locations. When a dynamic performance of the structure is to be improved, design sensitivity analysis plays an important role as like many structural redesign problems. In this work, a shape design concept, different from conventional design, was applied to the problem. According to the theory shape can be a design parameter and optimal shape design can be found. This study concentrates on eigenvalue design sensitivity of the fuel rod supported by multiple spacer grids to determine optimal spacer grids positions.

Whenever a noise problem of a product is concerned, a first step is to identify the energy transmission path whether it is an airborne or a structureborne. Depending on the characteristic of the noise path, tools on the noise reduction are different. In this paper. an important aspect of the “mass law” in a noise transmission has been investigated. Since an airborne has 20 dB/Decade, and a structureborne 10 dB/Decade of a sound transmission loss due to a mass, an engineer who aims to have a light product design should have an enough knowledge on the mass law, especially, the sensitivity of the weight itself. A honeycomb plate is examined as a sample of a light structure to implement a mass law.

A control strategy for a dynamic system under Irregular disturbance by using stochastic controller is developed. In order to design stochastic controller. system dynamic model in real domain is transformed dynamic moment equation in stochastic domain by FPK approach. A study of real time control technique for stochastic controller is presented. The performance of stochastic controller is verified through experiment used by real time control technique method.

The purpose of this study is to suggest the correlation of singlenumber ratings for sound insulation by floor impact. As a assessment method of impact sound insulation. we selected the IIC contour of ISO, A weighted sound level. Inverse Aweighting curve and LIndex of japanese industrial standard. And we estimated the singlenumber ratings by application the measured data of impact sound level to each method. The results showed that the coefficients of determination between each two singlenumber ratings were very high (more than 0.9169). And In the condition of same assessment method, the coefficient of determination for lightweight impact sound was higher than that for heavyweight impact sound.

층간차음재에 대한 관심은 증대하고 있으나 실제로 우리가 층간 차음재를 선택하는데는 많은 어려움이 있다. 여기에 소개하는 재료는 기존의 성능이나 가격을 강조하는 제품과 차별화하여 건축적 관점에서 접근이 용이할 것으로 판단되는 것이다.(중략)

사무실 환경을 재현하는 챔버를 제작하고 사무 공간에서 발생 가능한 소음을 재현하는 음향시스템을 구축하였다. 소음원 확보를 위해 다양한 공간 조건하에서 발생하는 실제음을 녹취하였고, 이를 소음원 제시용 CD로 제작하였다. 사무실 환경 챔버 내의 다채널 스피커 음향 시스템을 구축한 후, 챔버의 공간 조건과 소음원의 컨벌루션을 통해 실제 사무실 발생음을 재현시켰다. 소음 환경 안에는 시간, 주파수 및 잔향 성분을 포함하였다.

recently out door stadiums have been built as multi purpose stadium for athletic sports It hold but also various events and huge concerts. in the past, outdoor stadium usually was built, but recently the outdoor stadium which of the 50 ％ of roof covered by doom have been built increasingly. as the result, the sound obstacle is becoming very important. but a design of sound has become unplaned except some of the stadium, also rarely been built by soundabsorption material. as the result, the purpose of this study is investigating, analyzing the theory for plan of electric acoustic sound, a drawing of acoustic design and measurement a result value, comparison, evaluating a main sound factor with criteria of the Seoul City design. and reservation time, clearness, sound pressure level suitable for using purpose, so the necessary quantities will be added to financial budget of building acoustic design. and For verification, this contains acoustic analyser measurement and computer simulation and this study will find the solution of helping method.

To control vibration of realsize steel structure, a hybridtype linear motor damper was designed and applied to 30m steel structure at UNISON. The LMD was tuned to the first mode natural frequency of the building. In order to use for simulation data and control parameters, dynamic response characteristics of building and damper were tested. The response of building was reduced by 10 dB with LMD and H
$\infty$ algorithm. This value was similar to the result of simulation. 
This purpose of this study was to design the effect of recovering of a hand amputees by myoelectronic hand. It was designed with 2 degree of freedom in tile laboratory. Myoelectronic hand had only one degree of freedom and one movement until now. Also this myoelectronic hand had multijoint system. Myoelectronic hand data was obtained by measuring hand and data was applied when it was designed myoelectronic hand. PID controll of myoelectronic hand was used to it. Displacement control was applied the first link of finger. Experiment was accomlkished in Tip grasp, power grasp and Hook grasp modes. Displacement controll was good in low frequency. Velocity control was applied to each mode. This myoelectronic hand with a hand amputees could do some jobs such as grasping materials. Further studies were needed to evaluate the effect of a myoelectronic hand with more precise laboratory equipment.

This paper presented a design and a control of a biped walking RGO and walking simulation by this system. The biped walking RGO was distinguished from the other one by which had a very lightweight and a new RGO type with 12servo motors. The vibration evaluation of the dynamic PLS on the biped walking RGO was used to access by the 3axis accelerometer with a low frequency vibration for the spinal cord injuries. The gait of a biped walking RGO depended on the constrains of mechanical kinematics and the initial posture. The stability of dynamic walking was investigated by a ZMP (Zero Moment Point) of the biped walking RGO. It was designed according to a human wear type and was able to accomodate itself to a human environments. The joints of each leg were adopted with a good kinematic characteristics. To test of the analysis of joint kinematic properties, we did the strain stress analysis of the dynamic PLS and the analysis study of FEM with a dynamic PLS. It will be expect that the spinal cord injury patients are able to recover effectively with a biped walking RGO.

본 논문은 인체의 머리진동 측정용 Bitebar에 관한 연구이며, 머리진동의 관심주파수 영역인 0.5∼30Hz 범위의 주파수 범위에서 ICP형 가속도계를 이용한 바이트바(Bitebar)의 공진특성에 관한 실험결과와 공진특성의 보상 방법에 관해 기술하고 있다. 또한 바이트바(Bitebar)의 회전비교교정에 관한 방법과 절차 그리고 실험결과를 제시하고 바이트바(Bitebar) 교정의 중요성과 오차(error)와 설계 제작에 있어서의 주의사항에 관해 간략히 소개한다.

본 논문은 인체진동 실험을 수행하는 연구자들이 필요한 표준절차를 소개한다. 국내 연구자들의 인체실험에 관한 보건과 안전(health and safety)에 대한 인식이 부족에서 발생할 수 있는 문제점들을 지적한다. 본 논문에서는 기존의 인체시험에 관련된 자료들(ISO 130901:1998(E)과 ISVR Technical Memorandum)을 비교 분석하여, 인체에 기계적인 진동을 수반하는 실험에 있어서 준수해야 할 실험의 절차들을 자세히 제시한다.

국외 환경 소음과 진동은 이미 세계보건기구(WHO)와 UN산하 환경기관에서 선언한 바와 같이 “전세계인의 문제”(“global issues”)로 분류 인식하고 있으며, 이들 문제점들에 대한 접근은 선진국들의 국민 복지정책의 가장 핵심적 요소로 관리하고 있다. 예를 들어, WHO가 출판한 공중소음에 대한 지침서［1］, 그리고 유럽공동체의 전문가 그룹이 작성한 보고서［2］들은 최근의 환경소음에 대한 새로운 접근의 필요성, 새로운 측정 및 평가 방법, 그리고 인체에 미치는 복합적 영향들의 새로운 평가 기법 개발, 그리고 환경 개선을 위한 장기적 계획과 실천 방안들을 구체적으로 제시하고 있다.(중략)

A BEM is highly efficient method in the sense of economic computation. However, boundary integration is not easy for the complex and moving surface e.g. in a rotating blade. Thus, Kirchhoff surface is designed in an effort to overcome the difficulty resulting from complex boundary conditions. A Kirchhoff surface is a fictitious surface which envelopes acoustic sources of main concern. Acoustic sources may be distributed on each Kirchhoff surface element depending on its acoustic characteristics. In this study, an axial fan is assumed to have loading noise as a dominant source. Dipole sources can be computed based on the FWH equation. Acoustic field is then computed by changing Kirchhoff surfaces on which nearfield is implemented, to analyze the effect of Kirchhoff surface on it.

FFU are used increasingly by the microeleceronics industry to provide clean recirculating air for the fabrication of integrated circuits and laminar flow air. There may be several hundred ffu in a large cleanroom, covering 100% of the ceiling area. Hence, there is of often knowledge in the inside and outside of the country the flu give rise to noise & vibration trouble to microelectronics industry. Noise ＆ Vibration control for satisfication about noise ＆ vibration criteria in TFTLCD factory cleanroom be in need of exact noise & vibration data of accurence from utility & equipment that can be exert a bad influence upon cleanroom. In this pater, hence we found out noise and vibration properities of ffu by using experimental method. And, we performed noise ＆ vibration analysis about noise it vibration level in cleanroom using semiempirical method for quantative approach about noise ＆ vibration level in cleanroom.

Sound measurement experiments and Finite Element analysis are carried out to understand the characteristics of the noise propagation and structure of the compressor in this research. Noises generated from the compressor on various conditions are measured to classify the transmission path of the noise propagation with respect to the sources. The experiment results show that noises attributed to the shell bending resonant modes accounts fer a major portion of the spectra and that damping spring of the discharge pipe have a damping effect on some frequency range. Constructions of the FE model show that the curvature of the upper shell is very important for the resonance of the upper shell. And, present upper shell has a difficult shape to be manufactured. And, in this research, shape optimization is conducted to increase the strength of the shell for the reduction of the noise. Sound spectrum of noise from the modified compressor verified the sound reduction.

The object of this research is limited to the reduction of compression process noise only among the main sources of compressor noise such as motor noise, compression process noise, and valve port flow noise. Thus the research is focused on the wave motion rather than the particle motion of sound wave travels. A muffler is a commonly used device to reduce the compression process noise, generated by the pressure pulsations caused by the cyclic compression process. In this research, the acoustic characteristics of the muffler are analyzed by using the normal gradient integral equation proposed by Wu and Wan. Moreover, a commercial code SYSNOISE developed by indirect variational boundary integral equation is also used to validate the results. For the noise reduction, the topology optimization technique using a genetic algorithm is used. The number, size and position of the muffler holes are considered as design variables. Compared with original design, the optimized design has very improved acoustic characteristics. Both numerical and experimental analyses are used to evaluate new design.

The goal of this research is the shape design of the valve using a computer simulation. For an analysis a basic mathematical model describing compression cycle is considered as consisting of five sets of coupled equations. These are the volume equation (kinematics), valve dynamic equation (dynamics), ideal gas equation (thermodynamics), Bernoulli equation (fluid dynamics), and dynamic equation of fluid particle based on Helmholtz equation (acoustics). Valve motion is made by the superposition of free vibration modes obtained by the finite element method. That is, the eigenvalues and eigenvectors are the sufficient modeling factors fur the valve in the simulation program. Thus, to design a shape of the valve, shape design sensitivity through chainruled derivatives is considered from two sensitivity coefficients, one is the design sensitivity of the capability of compressor with respect to the eigenvalues of the valve, and the other is the design sensitivity of the eigenvalue with respect to the shape change of the valve. In this research, the continuum design sensitivity analysis concepts are used for the latter.

The updating of FE model to match it with the experimental results needs the modal information. There are two cases where this methodology is illequip to deal with； underdetermined and illconditioning problem. The feedback exciter that uses the summation of the white noise and the signals from the measurement sensors multiplied with feedback gains can deal with these problems as the new modal data from the closed loop system generate more constraints the updating parameters should obey. The new modal data from the closed loop system should be different to enhance the condition of the modal sensitivity matrix. In this research, a guide for the selection of the sensor locations and the decision of the corresponding output feedback gains is proposed. This method is based on the sensitivity of the modal data with respect to the feedback gains. Through the proper selection of the exciter and sensor locations and the feedback gain, the eigenvalue sensitivity of the updating parameters which cause the illconditioning of the modal sensitivity matrix can be modified and consequently the error contamination in updating parameters are reduced.

The feasibility of using elastic dampers to mitigate earthquakeinduced structural response is studied in this paper. The properties of elastic dampers are briefly described. A procedure for evaulating the elastic damping effect when added to a structure is proposed in which the damping effect of elastic dampers is incorporated into modal damping ratios through an energy approach. Computer simulation of the damped response of a multistorey steel frame structure shows significant reduction in floor displacement levels.

This paper presents the reliability analysis technique on the dynamic characteristics of the torsion beam consisting the suspension system of passenger car. We utilize response surface method (RSM) and Monte Carlo simulation to obtain the response surface model that describes the limit state function for the natural frequencies of the torsion beam. Using the response surface model and the design optimization technique, we have obtained the optimized section considering the reliability of the torsion beam structure.

Addition of point supports results in increasing the fundamental frequency of a structure, generally. In this paper, searching more effective location of point supports is a major object to maximize a fundamental frequency of various cantilever plates. Results are presented by aspect ratio of the plate, by design domain within which point supports generate, and by mass location equipped on the plate. Optimization method is applied due to expand the ESO(Evolutionary Structural Optimization) method.

Since many reciprocating and rotating components are attached to jet loom structure. it is exposed to a more vibration and moise problems than the other textile machinery. Thus the design of the jet loom frame is very important to characterize the dynamic response. In this study, a finite element model of jet loom main frame was developed to investigate the dynamic characteristics of jet loom. Two different finite element models of different main frames were constructed and these models were validated by the experimental results. Dynamic characteristics such natural frequencies and mode shapes were in good agreement between the finite element analysis and experimental results within 10% error range. It is expected that the result from this study can be used as the basic information of jet loom dynamic analysis and be extended for further analysis of forced response case.

Theoretical analysis about transient torsional vibration was started from early 1960's for high power synchronous motor application. Especially, its simulation and measuring techniques in marine engineering field have been steadily studied by classification societies and designers of large diesel engine. In this paper, the simulation method of transient torsional vibration of two stroke low speed diesel engine using the Newmark method are introduced.

The nonlinear vibration of moving viscoelastic belts excited by the eccentricity of pulleys is investigated through experimental and analytical methods. Laboratory measurements demonstrate the nonlinearities in the responses of the belt, particularly in the resonance region and with the variation of tension. The measurements of the belt motion were made using a noncontact laser sensor Jump and hysteresis phenomenon are observed experimentally and are studied with a model which considers the nonlinear relation of belt stretch. An ordinary differential equation is derived as a working form of the belt equation of motion. Numerical results show good agreements with the experimental observations, which demonstrates the nonlinearity of viscoelastic moving belts

One of the challenging problems with bicycle simulators is to deal with the inherent unstable bicycle dynamics that is coupled with rider's motion. For the bicycle dynamics calculation and the real time simulation, it is necessary to identify the control inputs from the rider as well as the virtual environments. The six control forces of the Stewart platformbased motion system are used for estimation of the rider's action force, which is one of the important control inputs, but of which the direct measurement is impractical. For the effective estimation of the rider's action force, the dynamics model of the motion system is derived incorporated with both analytical and experimental methods and the sliding mode controller with perturbation estimation is developed.

The nonlinear characteristics for the hinge of a deployable missile control fin are investigated experimentally. The nonlinearity is caused by a worn or loose hinge and manufacturing tolerance and cannot be eliminated completely. The structural nonlinearity has an effect on the static and dynamic characteristics of the control fin. Therefore, it is necessary to establish the accurate nonlinear model for the hinge of the control fin. In the present study the existence of nonlinearities in the hinge is confirmed from the frequency response experiments such as tip random excitation and base sine sweep. Using the system identification method, especially, “ForceState Mapping Technique”, the types of nonlinearities are identified and the nonlinear hinge model of the control fin is established.

This paper demonstrates the reconstruction of input signals from only the measured signal for the simulation and endurance test of automobiles. The aim of this research is concerned with input signal reconstruction using various iterative teaming algorithm under the condition of system characteristics. From a linear to nonlinear systems which provides the output signals are estimated in this algorithm which is based on the frequency domain. Our concerns are that the algorithm can assure an acceptable stability and convergence compared to the ordinary iterative learning algorithm. As a practical application, a f car model with nonlinear damper system is used to verify the restoration of input signal especially with a modified iterative loaming algorithm.

High intensity vibroacoustic testing is the appropriate method for flight qualification testing of space flight vehicle which must ensure the acoustic environment of launch. To qualify vibroacoustic environment during its flight, High Intensity Acoustic Test was performed for KOMPSAT2(Korea MultiPurpose SATellite) STM(Structural Thermal Model). This paper presents the detailed description on the high intensity acoustic test for KOMPSAT2. Additionally the test results was compared with the analysis ones, which were estimated with 3D SEA(Statistical Energy Analysis) model.

A high intensity acoustic test facility is constructed at Korea Aerospace Research Institute (KARI) by 2003. The reverberant chamber of the facility has a volume of 1,228 cubic meters and shall provide an acoustic environment of 152 dB over the frequency range of 25 Hz to 10,000 Hz. The facility consists of a large scaled reverberant chamber, acoustic power generation systems, gases nitrogen supply systems, and acoustic control systems. This paper describes how the basic parameters of a chamber and power generation systems are controlled to meet the requirement of the test. The volume of a reverberant chamber is controlled by the size of test objects and the reverberant characteristics of a chamber. The capacity of acoustic power generation systems is determined by the energy absorption of a chamber and the efficiency of acoustic modulators. Simple math is employed to calculate the required power of acoustic modulators. Moreover, the paper explains how the distribution of sound pressure level at low frequency is checked by analytical and numerical methods.

It has been reported that discrepancies exist in the case of double panels with an air layer when the measured sound transmission loss is compared with the calculated values. It has been known that the cause of this discrepancy is in major from the unavoidable dips associated with the double wall resonances. In this work, several correction methods to make up for such resonances are studied. In particular, the ‘boundary damping’concept is revisited and its effects are discussed by comparing with measured values. It is shown that the correction methods are necessary for the sound insulation analysis of double partitions with an air layer, in order to ascertain the quantitative correlation between measured and predicted values.

A new estimation model of predicting the sound absorption performance for multiple perforated plate sound absorbing system was developed using transfer matrix method. The proposed method was validated by comparing the calculated absorption coefficients of a single layer perforated plate with the values measured by the twomicrophone impedance tube method far various porosity and cavity depth. The developed transfer matrix method was further applied to estimate the multiple layer perforated plates and it is shown that the estimated absorption coefficients generally agree well with the measured values.

This study describes the limit and application of the twomicrophone impedance tube method to the sound transmission loss measurement of several sound isolation materials with different physical properties. For the sound isolation materials having small flexural rigidity, it is shown that the twomicrophone impedance tube method is validated to practically measure the sound transmission loss. For the sound isolation materials having large flexural rigidity, on the other hand, it is found that the twomicrophone impedance tube method is no longer valid to measure the sound transmission loss because the regions of resonance and mass law are moved into the higher frequencies. In addition, in order to accurately measure the sound transmission loss of sound isolation materials, their size should be decided based on the consideration of the effect of acoustic excitation on their vibration response.

This part of ISO 1940 gives recommendations for determining unbalance and for specifying related quality requirements of rigid rotors; it specifies a) a representation of unbalance in one or two planes; b) methods for determining permissible residual unbalance; c) methods for allocating it to the correction planes; d) methods for identifying he residual unbalance state of a rotor by measurement; e) a summary of errors associated with the residual unbalance identification. This part of ISO 1940 is also intended to facilitate the relations between manufacturer and user of machines. Detailed consideration of errors associated with the determination of residual unbalance is covered in the 2nd part of ISO 1940 (ISO 19402 will deal with these errors).

Effect of handtransmitted vibration on human discomfort and health was reviewed. Since the effect by hand tool was more serious than those by any other vibration environments, western countries have protected hand tool workers by regulations. International organization for standardization legislate standard, ISO 5349, at 1979 for the measurement and evaluation of the effect. Afterwards, more than twenty standards on handarm vibration were enacted to Protect any damage of hand tool users. Even though Korea Standards adopted ISO 5349 in 2001, it is required an action plan should be applied to all of work environments, especially to the workers using pneumatic tool workwers such as miners, construction workers, and etc.

본 논문에서는 선박 추진용 및 산업용 왕복동 기계에서 발생하는 진동의 측정과 평가 또는 등급 분류를 위한 절차 및 지침을 설정한 규격인 ISO 108166에 대해 기술하고자 한다. 이 규격은 기계의 본체(main structure)에 장착된 보조기기를 제외한 본체 진동에 국한하며 적용한다.(중략)

One of important roles of concrete track is to reduce vibration transmitting to subgrade. In this paper, a numerical method for evaluating the effects of vibration reduction of concrete track is presented. Using the method, high frequency dynamic analyses and tracktunnelsoil interaction analyses are carried out for three types of concrete track in order to investigate the vibration reduction effects compared with normal ballast track.

KITECH and ODS performed a study of internal and external noise prediction of the KHST test train. The object of this study was 3 kind of cars; trailer car(TT2), motorized car(TM1) and power car(TP1) and the predicted noise was calculated for the two different driving speeds in free field and tunnel conditions. Data of carbody design and noise sources were delivered from each manufactures. Some of noise sources which were not available in project team, were chosen by experiences of ODS. Internal noise level of each car were predicted for two cases i.e, at 300 km/h and 350 km/h. In addition sound transmission path and dominant noise sources were also investigated of each section of car, which is circular shell typed part of whole carbody. In case of TT2, the dominating sound transmission path is floor in terms or structureborne noise and airborne noise. The main noise sources are structureborne noise from the yawdamper and airborne noise from the wheel/rail contact, whereas the dominating sound transmission path of TM1 are floor and sidewall below the window in terms of structureborne noise. The main noise sources of TM1 are structureborne noise from motor/gear unit and the yawdamper in the free field, and airborne noise from the wheel/rail contact and structureborne noise from motor/gear unit in the tunnel. Through the external noise prediction for the KHST test train formation, the noise form the wheel/rail contact is estimated as one of the major sources. In addition, the noise specification of subcomponent was proposed for managing each subsurpplier to reach the KHST noise requirement. The specification provide the sound power of machinery part and transmission loss of component of carbody structure. The predicted noise level in each case exceeded the required limit. Through this study, the noise characteristics of the test train were investigated by simulation, and then the actual test will be performed in near future. Both measured and calculated data will be compared and further work for noise reduction will be continued.

Response of the rail surface is an important factor for the train safety and comfortable travel, and evaluation of vibration at the area along a rail is an important factor for the vibration. The dominant method to reduce the vibration that reach the ground is installing vibration absorber between rall and the under structure. In this paper, we evaluated the vibration reducing effect of using vibration control sleeper pads to slave and earth at certain distance from the sleepers.

There are many reasons for occurring vibration when trains run on the railway, but the typical vibration are occurring when the trains run on the elevated Railway bridge. For the settlement of the problems form the vibration, it must be performed to analyze the effect of the vibration to human bodies and adjacent area. and to establish the countermeasures. In this paper, we analyzed the effects of the vibration to the bridge itself and to adjacent structures by measuring the vibration of YongDang Elevated Railway Bridge on Jeolla Line and adjacent area.

Railway noise is one of the main causes of environmental impact. Whenever a new railway line is planned or a housing project near an existing railway is proposed, an estimate of the relevant levels is usually required. For this, it is necessary to quantify those parameters that affect the railway noise. Therefore we investigated the noise and vibration level which 107 high speed trains generated passing through the block of test railway track between Chunan and Chungwon. This paper presents the status and characteristics of the high speed railway noise and an accurate prediction of the high speed railway noise.

In this study, reduction of airborne and structureborne noise of naval ship pump is presented. Since piping system arrangement such as valve location, flexible joint, pipe diameter and elbow location, discharge basin affect greatly on the noise measurement, care must be taken to minimize the unnecessary noise from the piping system. It is shown that structureborne noise of the motor with single resilient mount system exceeds criterion. Therefore, it is concluded that double resilient mount system is inevitable. Two kinds of mount is studied for upper mount; spring and rubber type. Although both mounts show good performance at low frequency including rpm frequency, 63Hz, spring mount is found to be inadequate at high frequency, because spring coil acts as a path for SBN.

The structural vibration of a diesel generator set was investigated through analyses and tests. FE modeling and normal mode analysis were performed and compared with measured results for both structure components and generator set assembly. The results of component analyses were fairly well coincident with measured results but those of assembled generator set showed more or less discrepancies. Discussions were given about the uncertainties for vibration characteristics of component structures and assembled running structures especially concerning their nonlinearities and damping effects. Detailed excitation analysis fellowed by forced response analysis was done from the engine and pressure data to compare with the actual measured vibration. As results the vibration prediction for frame structures of reciprocating internal combustion engine was confirmed reliable to some extent.

According to the trends of construction of large size vessel with high power, the natural frequencies of the bending modes of propeller blades have been lower than the past. Therefore, it is expected that the noise and vibration problems of the marine propeller are frequently occurred. As main issue of the propeller noise and vibration problem, the cavitation noise and singing noise due to the flow induced excitation of the bending modes of propeller blade in the high frequency range has been studied by the hydrodynamic researchers in the view point of the excitation force reduction. In this paper, the vibration mode characteristics of propeller with a large diameter in very large vessel are investigated by the vibration analysis of the finite element method using MSC/Nastran and the vibration measurement by the impact test on the propeller blade. According to the results, the natural frequencies of various blade bending modes in water entrained condition could be estimated from the natural frequencies taken by the measurement and free vibration analysis in the dry condition, and it could be estimated how the high frequency noise such as singing is generated from the blade bending modes.

선박 거주구는 승무원 및 여객들이 상주하는 곳으로서 대형 상선의 경우 주선체 상부에 건물형태의 높은 구조이므로, 선박의 불균형력과 프로펠러 기진력으로 인해 주 선체와 연성되어 진동이 발생한다. 대형상선의 거주구는 육상구조물과는 달리 주선체와 마찬가지로 강성은 일정하나 화물적재량의 변화에 따라 선박 거주구의 유효질량이 변화함으로 가변적인 진동특성을 갖는 구조물 중의 하나이다. 본 연구에서는 가변 동특성을 갖는 대형상선의 거주구 진동을 수동형 및 능동형 흡진장치를 통하여 제어할 경우 거주구의 고유진동수 변화에 따른 제어성능의 변화를 반영할 수 있으면서도 제어성능과 안정성이 뛰어난 강건제어 시스템의 설계 가능성을 수치 시뮬레이션을 통하여 확인하고자 하였다. 적용대상은 진동문제가 많이 발생하는 컨테이너 운반선과 초대형 원유운반선의 거주구 진동특성을 3차원 유한 요소법을 이용하여 검토하고, 실험적인 방법으로는 거주구 형태의 구조물의 질량변화에 대한 동조형 흡진기의 제어성능을 시험과 선형이차 진동제어 장치의 진동제어성능 실험결과를 소개하고자 한다.

Recently, floating offshore structure is studied as one of the effective utilization of the ocean space. And floating structure are now being considered for various applications such as floating airports, offshore cities and so on. The analysis of the dynamic response as it receives regular wave is studied. The finite element method is used in the analysis of structural section of this model. And the analysis is carried out using the boundary element method in the fluid division. In order to know the characteristics of the dynamic response of the floating structures, effects of wavelength, water depth, and wave direction on dynamic response of the floating structure are studied by use of numerical calculation.

Several tests are performed to evaluate road booming noise. Baseline test delivers the information of road noise characteristics. Coupling effect between structure and acoustics is obtained from the mode shapes and the natural frequencies by the modal test. Equivalent stiffness at joint areas between chassis and carbody system can be determined by the input point inertance test. Noise sensitivity of body mounting point of a chassis part can be obtained from the noise transfer function test with input point inertance test. Operational deflection shape makes us analyze the actual vibration modes of the chassis system under actual loading and find noise sources very easily. finally, the transfer function analysis is used to identify noise paths through the chassis system. However, all of the tests above mentioned must be performed to evaluate road booming noise. The objectives and the procedures of the tests are described in this paper. Also, the guideline for efficient road noise evaluation test can be found.

Dual Mass Flywheel(DMF) is used in order to improve the vibration characteristics of drivetrain of manual transmission vehicles. Regardless of its complexity and high cost, application of DMF is keep increasing due to a trend of using Diesel engines in passenger cars and light weight design of drivetrains. Modeling and analysis of DMF is rather simple, but finding out optimum parameters of damper may not be easy. Furthermore, its realization in DMF has some limitations due to DMF's structure and its structure dependent damping characteristics. Requirements on springdamper characteristics of DMF has been reviewed and investigations on structures and damping characteristics of currently Produced DMFs have been made in this paper. Also, ideal spring and damper characteristics has been proposed based on such investigations.

차량 실내에서 발생하는 엔진 부밍 소음은 엔진의 진동이 샤시로 전달되어 구조 진동의 형태로 발생하는 구조소음이다. 본 연구에서는 이러한 엔진 부밍 소음과 그 원인이 되는 엔진 진동 사이의 관계를 알아보고자 엔진 마운트 중 한 위치에서 차체로 전달되는 엔진 진동을 줄일 경우 실내 엔진 부밍 소음의 변화를 고찰하였다. 이를 위하여 제어용 구동기를 제작하고 feedforward 와 feedback 제어기를 혼합한 hybrid 제어기를 적용하여 실차 실험을 수행하였다.

A porous tube, comprised of a resincoated woven fabric has recently been used as an effective component for use in intake systems of internal combustion engines to reduce the intake roaring. For the prediction of the acoustic performance of an engine intake system with a porous woven hose, the acoustic wall impedance of the hose must be known. Because of its peculiar acoustical and structural characteristics, the accurate measurement of the wall impedance ofa porous woven hose is not easy. A new measurement technique is proposed herein, that is valid over the low to mid frequency ranges. The acoustics impedance is inversely estimated from an overdetermined set of measured pressure transmission coefficients for specimens of different lengths and the reflection coefficient of end termination. The method involves only one measurement, and, as a result, it is very simple. The measured TL for samples with arbitrary conditions, arbitrary porous frequency, arbitrary length, and arbitrary mean flow condition, are in reasonably good agreement with values predicted from curvefitted impedance data.

Accurate prediction of the transmission loss of dissipative silencers has been considered difficult due to the ambiguity and complexity in the physical properties of sound absorbing materials. Additional difficulty lies in the fact that the analytical calculation of the propagation constant is unknown yet. In this paper. as a first step toward obtaining the Propagation constant and thus predicting the transmission loss, an approximation equation stemming from the wave analysis in the lined interior has been derived. Such an analytical solution and numerical solution using the boundary element method are compared for a twodimensional simple dissipative silencer under the assumption of the locally reacting sound absorbent.

The objective of this research is to suggest the noise prediction method of the centrifugal compressor. It is focused on the Blade Passing Frequency (BPF) component which is regarded as the main part of the rotating impeller noise. Euler solver is used to simulate the flowfield of the centrifugal compressor and timedependent pressure data are calculated to perform the nearfield noise prediction by Ffowcs WilliamsHawkings (FWH) formulation. Indirect Boundary Element Method (IBEM) is applied to consider the noise propagation effect. Pressure fluctuations of the inlet and the outlet in the centrifugal compressor impeller are presented and Sound Pressure Level (SPL) prediction results are compared with the experimental data.

Over the last few decades, noise has played a major role in the development of aircraft engines. The dominant noise is generated by the wake interactions of fan and downstream stator. Engine inlet and exhaust ducts are being fitted with liner materials that aid in damping fan related noise. In this paper, the radiation of duct internal noise from duct open ends with liners is studies via numerical methods. The linearized Euler's equations in generalized curvilinear coordinates are solved by the DRP scheme. The far field sound pressure levels are computed by the Kirchhoff integration method. Through comparison of sound directivity from bellmouth duct with and without liners, it is shown that radiation from engine inlet is affected by liner effects or a soft wall boundary condition.

This paper deals with a fundamental and classical scattering problem by a finite strip. For the analysis of scattered acoustic field, a “single” integral equation is derived. Firstly, the complexity by considering the effect of the mean flow is alleviated by the introduction of PrandtlGlauert coordinate and the new dependent variable. Secondly, the difficulty of solving the resultant stronglycoupled integral equations which always appear in this kind of 3part mixed boundary value problem is solved by observing some good properties of the functions in complex domain and manipulating the equations and variables for the use of those properties. The solution can be obtained asymptotically in terms of gamma function and Whittaker function. One aim of this study is the improvement of methodology for the research using integral equations. The other is the basic understanding of scattering by a finite strip related to the linear cascade model of rotating fan blades.

This paper exploits how vortex noise is generated around a cylinder. This is done by utilizing an acoustic holography. In this experiment. compressed air was Infected to tile cylinder through a hose. Therefore, major noise sources were at a hose end as well as around the cylinder： vortex shedding noise. The holography results show a resultant noise picture there it is not easy to clearly sort out the shedding noise and what is generated at the end of the tube. We attempted to separate those noise by the method we developed : contribution analysis scheme. The method, in fact, was found to be efficient and practical to separate the noise field into independent noise sources. The highlights of the results are. we believe, that lift and drag noise picture are now available. This procedure does not limit its application. therefore we may use this to visualize any noise field that we want to understand.

This paper shows the effect of mean flow in duct. The potential equation of duct with mean flow is obtained. A finite element method(FEM) is used to predict acoustic performance of duct with mean flow. The formulation of the finite element method is derived for duct taking into consideration of the convective effect of mean flow. A simple duct, simple expansion chamber and a duct with resonator are implemented to show the effects of the mean flow.

The Active Constrained Layer Damping(ACLO) combines the simplicity and reliability of passive damping with the low weight and high efficiency of active control to attain high damping characteristics. The proposed ACLD treatment consists of a viscoelastic damping which is sandwiched between an active piezoelectric layer and a host structure. In this manner, the smart ACLD consists of a Passive Constrained Layer Damping(PCLD) which is augmented with an active control in response to the structural vibrations. The Arc type shell model is introduced to describe the interactions between the vibrating host structure, piezoelectric actuator and visco damping, The system is modeled by applying ARMAX model and changing a statespace form through the system identification method. An optimum control law for piezo actuator is obtain by LQR(Linear Quadratic Regulator) Method. The performance of ACLD system is determined and compared with PCLD in order to demonstrate the effectiveness of the ACLD treatment, Also, the actuation capability of a piezo actuator is examined experimentally by using various thickness of Viscoelastic Materials(VEM).

SMD(Surface Mounting Device) which mounts electronic components as ICChips on PCB automatically, produces a large dynamic force and vibration. The unwanted vibrations in SMD degrade the performance of the precision device and it is the major obstacle to limit its speed for mounting. This study investigated the vibration analysis of a typical SMD to predict the natural frequencies and mode shapes. To validate the finite element analysis of SMD, the FE result was compared with that of ODS measurements. It was shown that the predicted results were well correlated with the experimental modal parameters.

This paper considers the vibration problem of vehicle driveline which consists of two propeller shafts and the center bearing. The excessive vibration occurs at the center bearing when the vehicle starts to run. Using the kinematic constraints at the universal joint between two propeller shafts, we develop an one d.o.f model which describes the radial motion of the center bearing. We find out the vibration occurs at the specific vehicle speed corresponding to the natural frequency of the model. Comparing the simulation results with test results we also show that the vibration at low vehicle speed is caused primarily by the joint angle and secondarily by the misaligned yoke flange rather than by the unbalance.

Fluid Pulsation in pipe usually cause several forces and these forces make mechanical vibration and noise. Protecting pipe from mechanical vibration is very important problem because vibration make pipe damage and break. To analyze pipe, we must formulate both the fluid pulsation force and vibration of pipe. In this paper fluid force from pulsation is modeled by Fluid Dynamics and solved by FEM(finite element method). The discharge pipe is also modeled by the FEM with use of 6 dof beam model. The acceleration of discharge pipe is estimated by the suggested method in this paper. The comparision of estimated results with experimental results show good agreement, which verified the validation of this method

The noise and vibration of rolling pistontype compressors used in the most of the airconditional system is a serious and important problem occurred during turning on and off as well as during operating. To analyze the vibration occurred during turning on and oft, the vibration analysis of motorcompressor coupling is required. In this paper, through modeling of the motor, solving the force from the equations of motion of the moving parts and considering the stiffness of the rubber mounts, the analysis of vibration was performed.

This study proposes an analytic method that determines an optimal arrangement of absorptive materials on an enclosure surface. Under the optimal arrangement, a quiet zone in the enclosure has the minimum
$\varepsilon$ $\sub$ p/ (acoustic potential energy density). The proposed method has been implemented by using a BEM simulation and a genetic algorithm. The BEM simulation evaluates the$\varepsilon$ $\sub$ p/ under the prescribed arrangement of the absorptive materials. The genetic algorithm searches the optimal arrangement by referring the ep evaluated from the BEM simulation. In the BEM simulation, the absorptive material arrangement is expressed as a vector, which is denoted as in absorptive material arrangement (AMA) vector. Besides, an admittance vector of which elements are admittances of available absorptive materials and an AMA matrix that transforms the admittance vector into the AMA vector are defined. The AMA matrix is also used as a chromosome in the genetic algorithm so that it functions to relate the BEM simulation to the genetic algorithm. As a verification example, the proposed method is applied to make the quiet zone in a parallelepiped enclosure. 
This paper deals with the factors affecting measurement of sound insulation performance of the ceiling panels. The factors to be experimently examined are as follows: sound diffuseness of the test room by investigating sound pressure distribution, Reverberation time, and influence of speaker location on measured results. Based on the investigation of sound pressure distribution over measuring points, it can draw a conclusion that rectangular shaped rooms as test rooms have a serious problem associated with the diffuse sound field.

The purpose of this paper is to examine sound absorption characteristics of sintered Al(aluminum) plate. Comparison between experiment and theoretical analysts by using empirical formula are made. Based on comparison. it is found that Voronina model gives more reasonable explanation for sound absorption characteristics of sintered Al plates. Effect of air gap with varying the thickness of plates are also investigated, which concludes that the air gap generally increase absorption but for too thick thickness of Al plates. Al plates with air gap shows 0.85∼0.9 of NRC(Noise Reduction Coefficient) measured in reverberation room. which is comparable to glass wool. Comparison between normal and random Incident absorption shows that random incident absorption is higher than normal incident absorption.

In building acoustics, reverberation time is an important acoustic parameter. However, it is often difficult to measure short reverberation times at low frequencies using the traditional band pass filter bank if the product of bandwidth (B) and reverberation time (T) is small. It is well known that the minimum permissible product of bandwidth and reverberation time of the traditional band pass filter is at least 16 ［F. Jacobsen, J. Sound Vib. 115, 163170 (1987)]. This strict requirement makes it difficult to measure short reverberation times of an acoustic room at low frequencies exactly. In order to reduce this strict requirement, recently, the wavelet filter bank is developed and the minimum permissible product of bandwidth and reverberation time is replaced with 4 [S. K. Lee, J, Sound Vib. 252, 141153 (2002)]. In the present paper, it is demonstrated how the short reverberation times at low frequencies are successfully measured by using the wavelet filter bank. In order to present this job, two synthetic signals and one measured signal are used for impulse responses of an acoustic room.

A modeling is developed to predict the isolation performance of sound barrier systems under the sound pressure radiated from excited by point impact. The predicted results are compared with the measured results obtained by using APAMAT II. This instrument provides a combination of structureborne noise and airborne noise, which corresponds to rolling noise, by applying the excitation system projected steel balls against the steel sheet.

Computer simulation is essential to design the suspension elements of railway vehicle. By computer simulation, engineers can assess the feasibility of a given design factors and change them to get a better design. But if one wishes to perform complex analysis on the simulation, such as railway vehicle dynamic, the computational time can become overwhelming. Therefore, many researchers have used a mega model that has a regression model made by sampling data through simulation. In this paper, the neural network is used a mega model that have twentynine design variables and fortysix responses. After this mega model is constructed, multiobjective optimal solutions are achieved by using the differential evolution. This paper shows that this optimization method using the neural network and the differential evolution is a very efficient tool to solve the complex optimization problem.

Dynamic behaviors of the Korean Highspeed Train(KHST) have been analyzed to investigate the performance on the stability, the safety and the ride comfort. Multibody dynamics analysis program using Recursive method, called RecurDyn, have been employed in the numerical simulation. To model the wheelrail contact, the RecurDyn uses its builtin module which uses the square root creep law. The accuracy of the rail module in RecurDyn. however, decreases in the analysis of flange contact because it linearizes the shape of the wheel and rail. To solve this problem, a nonlinear contact theory have been developed that considers the profiles of the wheel and rail. The results show that the KHST still needs more stability. The problem should be solved by the examinations of module and modeling.

With rapidly industrial development, a railway has become of a main traffic means. But, the railway noise has caused much annoyance for the residents living nearby railway tracks. Therefore, in our country, for established of quite dwelling environment. execute regulation standard of railway noise from January 1. 2000. Efficiency soundproofing measures, however, are very difficult because of the lack of basic data and insufficiency of the existing research. In this point. this study attempts to survey the vertical sound pressure level of railway noise in by existence of noise harrier And this study intends to get the basic data for establishment of a efficient noise barrier about railway noise.

High speed railroad noise is one of the main causes of environmental impact. An estimate of the relevant noise levels is usually required in order to evaluate the noise barrier and the antinoise trailer. This paper introduce the test procedure and the estimate for HST noise. The aim of this is to measure, by means of a test, the level of acoustic pressure present during the passing of a KTX(Korea Train Express), in order to satisfy the contractual requirements and the noise criteria. A number of measurements are carried out in order to estimate noise impact by HST along test track.

The purpose of this study is to analyze the effects of the parameters of the suspension system in railway rollingstock for KT23 type passenger vehicle. According to the results of simulation and the small scale vehicle test. Optimal condition was obtained for the stiffness ratio of the primary spring and secondary spring of the suspension system. When the stiffness ratio was Increased, the vortical vibration was increased on the car body for empty and weight car. The result of this study are stable to use of the optimum parameter of the ride duality of KT23 type vehicle. Also, it is usefull to development of full scale vehicle dynamomer

최근의 국제화 추세에 따라 국내의 산업규격을 국제규격인 ISO와 부합시키는 방향으로 나아가고 있다. 공동주택의 바닥충격음 문제가 사회적인 관심이 되면서 탄성재료(완충재)를 이용한 뜬 바닥 구조가 많이 사용되고 있다. 탄성재료의 동탄성계수와 바닥충격음의 경량충격음과는 밀접한 관계가 있다.(중략)

Recently Korean Industrial Standards has been revised and established newly accordance with the ISO system, especially ISO 140 series. This study aims to introduce and review ISO l1654 which contents rating of sound absorption. It is available to establish appropriate evaluating method and Korean Industrial Standard of the sound absorber for use in building.

Offices and other multipurpose buildings commonly have suspended ceilings installed over room dividing wall. But Korean Standards don't include any code on test methods and test facility of the suspended ceiling system. Therefore, test methods and test facility from ISO or ASTM have been used for evaluating sound performance in domestic so far. In this study, every regulation from ISO, ASTM, especially for airborne sound insulation against suspended ceiling system, is analyzed in order to apply to establishment of Korean Standards on test methods and test facility of suspended ceiling system and materials.

최근 국내에서는 바닥충격음에 대한 측정방법이 개정(2001년 6월 19일자 기술표준원 고시 제2001334호)되어 KS F 28101(바닥충격음 차단성능 현장 측정방법 1부 표준중량충격원에 의한 방법)과 KS F 28102(바닥충격음 차단성능 현장 측정방법 2부 표준중량충격원에 의한 방법)의 체계가 구축되었다. 이는 현장 측정방법으로서 완성된 건축물에 대한 공간성능을 측정하는 의미를 가지고 있다.(중략)

In this study, the ISO 151861 “Measurement of sound insulation in buildings and of building elements using sound intensity  Part 1 : Laboratory conditions” was reviewed in order to make it as a new Korean Industrial Standard. Several main contents are discussed.

For the evaluation of the DC motor noise and vibration, usually it is rely on human feeling because some kinds of noise are not definitely represented by measurement Instrument such as sound meter. But when we consider time signal of the noise and vibration. It is possible to represent them. And in this paper. it is suggested to study output current shape of the motor because it Is the source to make speed and torque variation of the motor. If the current shape is not stable. it makes operating state of the motor unstable and produces noise and vibration. By analyzing signal at time and frequency of noise and vibration and current shape. it is possible to automation of the noise and vibration measurement in the Production line.

The exhaust system could be a dominant acoustical source in the passengers vehicle. It would be very important to obtain the acoustically good exhaust system, in order to control the cabin interior sound in automotive. In order to obtain the acoustically good exhaust system in automotive, many kinds of exhaust system should be measured, and simultaneously those results should be compared by the sound quality parameters. In this paper, in order to develop the methodology determining sound quality parameters, acoustic simulator is introduced, combining the time domain analysis and convolution analysis. As an example to verify the reliability of this method, several kinds of measurements are carried out, and the acoustically good exhaust system is selected, based on this proposed method.

This paper describes the examples of Noise, Vibration and Harshness(N.V.H) development applying Computer Aided Engineering(CAE). Some Commercial Software was used to reduce the cost, development time and to predict the Noise and vibration phenomenon of new vehicle design. This paper is including measured and analysis data, and tried to prove the good correlation between measured and calculated data, so test and analysis data were compared seriously and carefully. Analysis models, which were used to predict and develop the NVH phenomenon, analysis method, and a field of 0application are explained briefly. Also, model pictures are presenting in this paper. This paper describes the analyzing method of the calculated results, design modification and development procedure, and NVH performance target setting up and procedure.

This paper describes an investigative study for Wind Noise of Passenger Cars. Using statistical method of analyzing jury preference data, we extract important sound quality metrics for subjective feeling and also md important frequency band. It will be helpful for development of wind Noise improvement.

Vibration and sound characteristics of King SongDok Bell are measured and the modal property is investigated. The effect of striking position and modal property on the beat characteristics is examined. It is first found that the beat characteristics are quite different according to the position on the bell surface and clear beat is periodically generated on the circumference. It turns out that in King SongDok Bell, striking Dangjwa(the present striking position) makes a beat in the first vibration mode, as well as it produces very clear beat in the second vibration mode.

Analytical model of beat response is derived on a slightly asymmetric ring and is veryfied by experiment. The asymmetric ring is a simplified model used to explain the beat property of a Korean bell. The asymmetric ring has mode pair having slight frequency difference in each radial mode. Each mode pair produces beat phenomenon by the interaction of the two close frequency components. Based on the analytical model, beat maps are first proposed and characteristics of beat on the circumference are detaily explained.

In this paper, power flow analysis method on the various types of thin shell has been developed to solve vibrational Problems in the medium to high frequency ranges. Energy governing equations have been derived both for outof plane and inplane waves in thin shell. These results have been numerically applied to predict the vibrational energy density and intensity distributions of cylindrical, spherical and doublycurved shells.

The objective of this paper is to apply experimental methods to measure the inplane vibration intensity of a semiinfinite beam. Two experimental methods have been implemented to measure the inplane vibration intensity of the beam. The first method is the cross spectral intensity measurement method using two accelerometers. The second method is the frequency response method using the only one acrelerometer. It has the advantages of shortening measurement time and reducing accelerometer phase error. Experimental results showed that those experimental methods can be effectively used to measure the structural Inplane vibration intensity.

Acoustic intensity is usually estimated by the crossspectrum of acoustic pressure at two adjacent micrphones. The crossspectrum calculated by digital Fourier transform technique will unavoidally have leakage error since the period of signal will not be usually coincident with record length. Therefore, the acoustic intensity estimated by the conventional r]n analyzer will show distorted value. In this paper the expression of the Fourier transformed data of a harmonic signal is formulated when there is leakage error. The method to elimate the effect of leakage error from the contaminated data is also proposed. Some numerical examples show the validation of the proposed method.

Researches on the FRFbased substructuring method have been mainly focused on vibratory response analysis. Present study Is concerned about the application of the method to the dynamic stress analysis of a airconditioner compressor mounting bracket in a passenger car. This is performed by using reaction forces that can be obtained by the FRFbased substructuring method. The airconditioner system, composed of a compressor and bracket, Is analyzed by using the FRFbased substructuring method. The experimental and numerical FRFs are combined to calculate the system responses and reaction forces at the connection point. The dynamic reaction forces plugged into the bracket FE model to compute the stresses of the bracket Dynamic strains by the present method are compared with those from straingage test for bracket system on shaker. The comparison shows possibility of practical usage of the method for the real problem

This paper presents the characteristics of the radial vibration of cylindrical piezoelectric transducers. The differential equations of piezoelectric radial motion have been derived in terms of the radial displacement and electric potential, which are functions of the radial and axial coordinates. Applying mechanical and electrical boundary conditions has yielded the characteristic equation of radial vibration. Numerical results of the natural frequencies have been compared with the experimental observations reported earlier for the transducers of several sizes, and have shown a good agreement for the fundamental mode. The paper discusses the dependence of the natural frequencies on the radius and thickness of the piezoelectric cylinders and the difference between Piezoelectric and elastic resonances

The spent fuel handling tool is used to handle the refuel bundle and treated by hoist rope on the bridge crane. The new developed handling tool of NPP(Nuclear Power Plant) should be conformed the structural stability under earthquake condition. In this study, the stress and seismic analysis of the handling tool are performed by finite element method. Using the Floor Response Spectrum(FRS) obtained through the time history analysis, the modal and seismic analysis under Operating Basis Earthquake(OBE) and Safe Shutdown Earthquake(SSE) load conditions are carried out. Total 4 cases of different locations of the trolly and the hook are investigated. With the springdamper element, the tension analysis of hoist rope is conducted. The stability of handling tool under earthquake load condition is conformed with regulatory guide.

The fuel rods in the pressurized water reactor are continuously supported by a spring system called a spacer grid which is one of the main structural components for the fuel rod cluster (fuel assembly). The fuel rods are vibrating within the reactor due to coolant flow. Since the vibration, what is called flowinduced vibration(FIV), can wear away the surface of the fuel rod, it is important to understand the vibration characteristics of it. In this paper, the vibration analyses and the tests for the dummy rods supported by New Doublet(ND) spacer grids are described. A new FE model which reflects the contact area between the rod and ND spacer grid spring is developed to replace the previous one by which a good agreement could not be obtained with the vibration test. The natural frequency and mode shape calculated by both the previous FE model and the new one are compared with those of experiment fur a singlespanned rod supported by two ND spacer grids. The results by the new model show good agreement to experiment as compared with the ones by previous model. In addition, the new FE model is applied to the vibration analysis fur the dummy rod of 2.19 m tall continuously supported by five ND spacer grids. It is also obtained that the analysis results by the new FE model well agree to experiment ones as the singlespanned rod.

Noise barrier is used to reduce traffic noise. The effect of a noise barrier depends not only on the materials, but also on the physical properties such as density, height and degree of absorption, etc. Typical absorptive noise barrier is used sound absorbing material, such as glass wool and mineral wool. The goal of this study is to develope excellent absorptive noise barrier using a polyester. Laboratory measurements were peformed with various thicknesses, density and layer of absorber in a reverberation room.

This study is aimed to evaluate a tunneling effect in association with the measurement of sound transmission loss. Based on the formulation for sound transmission loss of a finite panel in the presence of tunnel, variations of the sound transmission loss with parameters such as the location of panel and tunnel depth are investigated. It can be seen that differences in the sound transmission loss are quite evident below coincidence frequency and the sound transmission loss greatly depends on panel location in the tunnel. In comparison with the case without a tunnel, maximum difference occurs in the case where the panel is placed on the center of the tunnel and the flushing with the end of the tunnel gives the better estimation of transmission loss.

When measuring sound transmission loss (STL) in a laboratory, the specimen location in test aperture affects considerably the measuring accuracy through the influence of socalled “tunneling effect” In this paper, for a single panel and a double panel with air cavity, experimental STL evaluations on various specimen locations on test aperture were carried out to explain the phenomenon. It is shown that the difference of STL is more than 2dB especially at the low frequency region and the case of the centerlocated panel yielded the lower STL than that of flushing with the end of tunnel, which confirms that the tunneling effect plays an important role in STL measurement.

In this study, the validity of the acoustic impedance model and the estimation model by electroacoustic analogy suggested by Maa for predicting the absorptive performance of multiple layer perforated plate systems is investigated. From the comparison between the experiment and calculation for the absorption performance of double layer perforated plate system, the calculated results of using Rao and Munjal's impedance model and transfer matrix method are closer to the experimental values than those of using Maa's impedance model and electroacoustic analogy. Therefore, in order to apply the acoustic impedance model and the estimation model by electroacoustic analogy suggested by Maa to the multiple layer perforated plate systems, it is necessary that the suggested acoustic impedance and estimation models should be reexamined.

In this study, the physical characteristics of steelwire sound absorbing materials with different thickness and bulk density is experimentally obtained in terms of the porosity and specific flow resistivity. Based on the experimental results, the following conclusions can be made. The porosities of steelwire sound absorbing materials are smaller than those of general absorbing materials, which are inversely proportional to the volume densities. For the porosity measurement with a good accuracy, the dynamic correction based on the system compliance should be involved in porosity measurement. In addition, the flow condition for the precise measurement of the specific flow resistivity of steelwire sound absorbing materials should be limited in the laminar flow region.