• Title, Summary, Keyword: $YPO_4$$GdPO_4$

Search Result 2, Processing Time 0.022 seconds

Preparation and Luminescent Characteristics of Phosphate-Based Phosphors (포페이트계열 형광체의 합성 및 광특성 평가)

  • Noh, Seh-Chul;Kim, You-Hyuk
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.21-26
    • /
    • 2002
  • In order to search new phosphors for plasma display panel(PDP), phosphate hosts which has a host excitation band at around 150nm were prepared and their luminescent properties were investigated. In the preparation of $YPO_4: Eu\; and\; (Y,Gd)PO_4: Eu$ phosphors, the effect of oxide and oxalate starting materials on prepared phosphors were compared in terms of relative emission intensities and particle characteristics. The results showed that oxalate starting materials gave better performance in emission intensities and smaller size and more round shape phosphors which would be more applicable for high resolution display. Additionally, Gd, V, Nb and Ta ions were doped to $YPO_4:Eu$ and the luminescent properties of the resulant solid solutions were investigated to find efficient sensitizer. Among these ions, Gd, V and Nb ions increased the emission intensities of parent phosphor to around 10%. While Nb ion gave the best result in emission intensities, CIE color coordinate were improved by doping V ion into $YPO_4:Eu$ phosphor to give x=0.6523, y=0.3406 compared to commercial sample.

Synthesis of (Gd0.74Y0.11Tb0.15P1.15)OδPhosphors Using Combinatorial Chemistry (조합화학을 이용한 (Gd0.74Y0.11Tb0.15P1.15)Oδ 형광체 합성 및 발광특성)

  • 이재문;유정곤;박덕현;김지식;손기선
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.5
    • /
    • pp.381-387
    • /
    • 2004
  • Recently developed Plasma Display Panels (PDP) require phosphors of high luminance at Vacuum Ultraviolet (VUV) excitation. The present investigation developed new PDP phosphors using combinatorial chemistry method. We applied T $b^{3+}$ -activated yttrium gadolinium phosphates system to our combinatorial fine-tuning technique. As a result, the optimum composition was determined to be (G $d_{0.74}$ $Y_{0.11}$T $b_{0.15}$) $P_{1.15}$ $O_{\delta}$ through the two-step combinatorial screening process including excess phosphorous and Gd replacement. We found that the sample of the optimum composition shows a higher luminescence efficiency at VUV excitation and a shorter decay time than the commercially available Z $n_2$ $SiO_4$:Mn phosphor.