• Title, Summary, Keyword: (A,${\eta}$)-accretive mapping

Search Result 5, Processing Time 0.028 seconds

GENERAL NONLINEAR RANDOM SET-VALUED VARIATIONAL INCLUSION PROBLEMS WITH RANDOM FUZZY MAPPINGS IN BANACH SPACES

  • Balooee, Javad
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.243-267
    • /
    • 2013
  • This paper is dedicated to study a new class of general nonlinear random A-maximal $m$-relaxed ${\eta}$-accretive (so called (A, ${\eta}$)-accretive [49]) equations with random relaxed cocoercive mappings and random fuzzy mappings in $q$-uniformly smooth Banach spaces. By utilizing the resolvent operator technique for A-maximal $m$-relaxed ${\eta}$-accretive mappings due to Lan et al. and Chang's lemma [13], some new iterative algorithms with mixed errors for finding the approximate solutions of the aforesaid class of nonlinear random equations are constructed. The convergence analysis of the proposed iterative algorithms under some suitable conditions are also studied.

ITERATIVE ALGORITHM FOR A NEW SYSTEM OF GENERALIZED SET-VALUED QUASI-VARIATIONAL-LIKE INCLUSIONS WITH (A, ${\eta}$)-ACCRETIVE MAPPINGS IN BANACH SPACES

  • Jeong, Jae Ug
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.5_6
    • /
    • pp.935-950
    • /
    • 2012
  • In this paper, we introduce and study a new system of generalized set-valued quasi-variational-like inclusions with (A, ${\eta}$)-accretive mapping in Banach spaces. By using the resolvent operator associated with (A, ${\eta}$)-accretive mappings, we construct a new iterative algorithm for approximating the solution of this system of variational inclusions. We also prove the existence of solutions and the convergence of the sequences generated by the algorithm in Banach spaces. The results presented in this paper extend and improve some known results in the literature.

SENSITIVITY ANALYSIS FOR A NEW SYSTEM OF VARIATIONAL INEQUALITIES

  • Jeong, Jae-Ug
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.427-441
    • /
    • 2010
  • In this paper, we study the behavior and sensitivity analysis of the solution set for a new system of generalized parametric multi-valued variational inclusions with (A, $\eta$)-accretive mappings in q-uniformly smooth Banach spaces. The present results improve and extend many known results in the literature.

A HYBRID PROXIMAL POINT ALGORITHM AND STABILITY FOR SET-VALUED MIXED VARIATIONAL INCLUSIONS INVOLVING (A, ${\eta}$)-ACCRETIVE MAPPINGS

  • Kim, Jong-Kyu;Li, Hong Gang
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.703-714
    • /
    • 2010
  • A new class of nonlinear set-valued mixed variational inclusions involving (A, ${\eta}$)-accretive mappings in Banach spaces is introduced and studied, which includes many kind of variational inclusion (inequality) and complementarity problems as special cases. By using the resolvent operator associated with (A, ${\eta}$)-accretive operator due to Lan-Cho-Verma, the existence of solution for this kind of variational inclusion is proved, and a new hybrid proximal point algorithm is established and suggested, the convergence and stability theorems of iterative sequences generated by new iterative algorithms are also given in q-uniformly smooth Banach spaces.

SENSITIVITY ANALYSIS FOR A SYSTEM OF GENERALIZED NONLINEAR MIXED QUASI-VARIATIONAL INCLUSIONS WITH (A, η)-ACCRETIVE MAPPINGS IN BANACH SPACES

  • Jeong, Jae-Ug;Kim, Soo-Hwan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1175-1188
    • /
    • 2009
  • In this paper, we study the behavior and sensitivity analysis of the solution set for a new system of parametric generalized nonlinear mixed quasi-variational inclusions with (A, ${\eta$)-accretive mappings in quniformly smooth Banach spaces. The present results improve and extend many known results in the literature.