• Title, Summary, Keyword: 감정사전

Search Result 102, Processing Time 0.039 seconds

Developing a Korean sentiment lexicon through label propagation (레이블 전파를 통한 감정사전 제작)

  • Park, Ho-Min;Cheon, Min-Ah;Nam-Goong, Young;Choi, Min-Seok;Yoon, Ho;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.91-94
    • /
    • 2018
  • 감정분석은 텍스트에서 나타난 저자 혹은 발화자의 태도, 의견 등과 같은 주관적인 정보를 추출하는 기술이며, 여론 분석, 시장 동향 분석 등 다양한 분야에 두루 사용된다. 감정분석 방법은 사전 기반 방법, 기계학습 기반 방법 등이 있다. 본 논문은 사전 기반 감정분석에 필요한 한국어 감정사전 자동 구축 방법을 제안한다. 본 논문은 영어 감정사전으로부터 한국어 감정사전을 자동으로 구축하는 방법이며, 크게 세 단계로 구성된다. 첫 번째는 영한 병렬말뭉치를 이용한 영한사전을 구축하는 단계이고, 두 번째는 영한사전을 통한 이중언어 그래프를 생성하는 단계이며, 세 번째는 영어 단어의 감정값을 한국어 단어의 감정값으로 전파하는 단계이다. 본 논문에서는 제안된 방법의 유효성을 보이기 위해 사전 기반 한국어 감정분석 시스템을 구축하여 평가하였으며, 그 결과 제안된 방법이 합리적인 방법임을 확인할 수 있었으며 향후 연구를 통해 개선한다면 질 좋은 한국어 감정사전을 효과적인 방법으로 구축할 수 있을 것이다.

  • PDF

Generating a Korean Sentiment Lexicon Through Sentiment Score Propagation (감정점수의 전파를 통한 한국어 감정사전 생성)

  • Park, Ho-Min;Kim, Chang-Hyun;Kim, Jae-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.2
    • /
    • pp.53-60
    • /
    • 2020
  • Sentiment analysis is the automated process of understanding attitudes and opinions about a given topic from written or spoken text. One of the sentiment analysis approaches is a dictionary-based approach, in which a sentiment dictionary plays an much important role. In this paper, we propose a method to automatically generate Korean sentiment lexicon from the well-known English sentiment lexicon called VADER (Valence Aware Dictionary and sEntiment Reasoner). The proposed method consists of three steps. The first step is to build a Korean-English bilingual lexicon using a Korean-English parallel corpus. The bilingual lexicon is a set of pairs between VADER sentiment words and Korean morphemes as candidates of Korean sentiment words. The second step is to construct a bilingual words graph using the bilingual lexicon. The third step is to run the label propagation algorithm throughout the bilingual graph. Finally a new Korean sentiment lexicon is generated by repeatedly applying the propagation algorithm until the values of all vertices converge. Empirically, the dictionary-based sentiment classifier using the Korean sentiment lexicon outperforms machine learning-based approaches on the KMU sentiment corpus and the Naver sentiment corpus. In the future, we will apply the proposed approach to generate multilingual sentiment lexica.

The Differences of Self-Validation, Regulatory Focus and Information Distortion Between Happiness and Sadness (행복감정과 슬픔감정 간의 자기타당화와 규제초점 및 정보왜곡의 차이)

  • Choi, Nak-Hwan;Chen, Fei;Kim, Min-Ji
    • Science of Emotion and Sensibility
    • /
    • v.20 no.3
    • /
    • pp.71-88
    • /
    • 2017
  • This paper compared self-validation and regulatory focus between consumers who felt happy vs. sad prior to decision and explored the effects of self-validation on regulatory focus and information distortion. The results of empirical analysis are as follows. First, consumers who felt happy beforehand revealed larger self-validation and stronger promotion focus than those who felt sad in advance. Second, compared to sadness, just-felt happiness was found to have partially positive impact on promotion focus by means of self-validation and exercise entirely positive impact on information distortion through mediation of self-validation. This study has made theoretic contributions by identifying the differences in the extent of self-validation and promotion focus between happiness and sadness as ambient emotion felt prior to the impending decision making as well as by investigating the effects of self-validation upon information distortion.

소비자의 제품 성과 평가 과정에 대한 점포 내 기분 상태의 역할

  • Kim, Gwang-Su;Sin, Jong-Guk;Gwak, Won-Il
    • Journal of Global Academy of Marketing Science
    • /
    • v.3
    • /
    • pp.173-193
    • /
    • 1999
  • 본 연구는 소비자의 제품성과 평가에 대한 선행요인을 규명하기 위한 것이다. 기존의 연구 결과에서는 제품성과에 대한 소비자의 사전 기대 신념 수준이 제품 성과 평가에 주요한 원인임을 밝히고 있다. 1980년대부터 소비자행동 및 심리학 분야에서 감정의 역할 및 기타 심리요소와의 관계에 대한 관심이 증대되면서 제품 평가 과정에 있어서 감정이 중요한 요인이 될 수 있음이 밝혀 졌다. 즉, 제품성과 평가에 있어서 소비자의 일시적 측면과 감정적 측면에 모두 영향을 받을 수 있다는 것이다. 그러나 감정에 관련된 인구에 있어서 항상 문제가 되어왔던 부분이 감정의 개념 규정과 특성이다. 현재까지도 이 문제는 여전히 해결해야 할 것이 많지만 이에 대한 새로운 연구 결과가 많이 제시되었다. 본 연구에서는 우선 이론적 고찰을 통하여 소비자 감정 반응의 유형을 구분하고 제품 평가 과정에서 발견되는 감정 반응은 주로 기분 상태의 성질을 띠고 있음을 설명한다. 한편 본 연구와 관련하여 주목할 만한 이론이 감정의 인지적 평가 이론이다. 이 이론의 필자는 개인의 복지에 영향을 미치는 사건에 대한 인지적 평가가 감정에 선행한다는 것이다. 본 연구에서는 감정의 인지적 점포 내 기분 상태의 인지적 평가 요소로 사전적 기대와 점포 평가를 제시하고, 점포 내 기분 상태의 결과로 제품 성과 평가를 제시하는 연구 모형을 수립하였다. 이 연구 모형에 대해 공분산 구조 분석을 실시한 결과 점포 평가가 점포 내 기분 상태의 중요한 인지적 평가 요인이 되었으며, 점포 내 기분 상태의 유쾌 차원이 소비자의 제품 성과 평가에 유의적인 영향을 미치는 것으로 나타났다.

  • PDF

Classification System for Emotional Verbs and Adjectives (감정동사 및 감정형용사 분류에 관한 연구)

  • 장효진
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • /
    • pp.29-34
    • /
    • 2001
  • 영상자료 및 소리자료의 색인과 검색을 위해서는 감정동사 및 감정형용사 등의 감정 어휘를 필요로 한다. 그러나 감정어휘는 그 뉘앙스가 미묘하여 분명한 분류체계가 없이는 체계적인 정리가 불가능하다. 이에 따라 본 연구에서는 국어학과 분류사전의 분류체계를 고찰하고 새로운 감정어휘의 분류방안을 연구하였으며, 감정에 따른 기쁨, 슬픔, 놀람, 공포, 혐오, 분노의 6가지 기본유형을 제시하였다.

  • PDF

A Sentiment Analysis of Internet Movie Reviews Using String Kernels (문자열 커널을 이용한 인터넷 영화평의 감정 분석)

  • Kim, Sang-Do;Yoon, Hee-Geun;Park, Seong-Bae;Park, Se-Young;Lee, Sang-Jo
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.56-60
    • /
    • 2009
  • 오늘날 인터넷은 개인의 감정, 의견을 서로 공유할 수 있는 공간이 되고 있다. 하지만 인터넷에는 너무나 방대한 문서가 존재하기 때문에 다른 사용자들의 감정, 의견 정보를 개인의 의사 결정에 활용하기가 쉽지 않다. 최근 들어 감정이나 의견을 자동으로 추출하기 위한 연구가 활발하게 진행되고 있으며, 감정 분석에 관한 기존 연구들은 대부분 어구의 극성(polarity) 정보가 있는 감정 사전을 사용하고 있다. 하지만 인터넷에는 나날이 신조어가 새로 생기고 언어 파괴 현상이 자주 일어나기 때문에 사전에 기반한 방법은 한계가 있다. 본 논문은 감정 분석 문제를 긍정과 부정으로 구분하는 이진 분류 문제로 본다. 이진 분류 문제에서 탁월한 성능을 보이는 Support Vector Machines(SVM)을 사용하며, 문서들 간의 유사도 계산을 위해 문장의 부분 문자열을 비교하는 문자열 커널을 사용한다. 실험 결과, 실제 영화평에서 제안된 모델이 비교 대상으로 삼은 Bag of Words(BOW) 모델보다 안정적인 성능을 보였다.

  • PDF

Movie Retrieval System by Analyzing Sentimental Keyword from User's Movie Reviews (사용자 영화평의 감정어휘 분석을 통한 영화검색시스템)

  • Oh, Sung-Ho;Kang, Shin-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1422-1427
    • /
    • 2013
  • This paper proposed a movie retrieval system based on sentimental keywords extracted from user's movie reviews. At first, sentimental keyword dictionary is manually constructed by applying morphological analysis to user's movie reviews, and then keyword weights in the dictionary are calculated for each movie with TF-IDF. By using these results, the proposed system classify sentimental categories of movies and rank classified movies. Without reading any movie reviews, users can retrieve movies through queries composed by sentimental keywords.

Grading System of Movie Review through the Use of An Appraisal Dictionary and Computation of Semantic Segments (감정어휘 평가사전과 의미마디 연산을 이용한 영화평 등급화 시스템)

  • Ko, Min-Su;Shin, Hyo-Pil
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.4
    • /
    • pp.669-696
    • /
    • 2010
  • Assuming that the whole meaning of a document is a composition of the meanings of each part, this paper proposes to study the automatic grading of movie reviews which contain sentimental expressions. This will be accomplished by calculating the values of semantic segments and performing data classification for each review. The ARSSA(The Automatic Rating System for Sentiment analysis using an Appraisal dictionary) system is an effort to model decision making processes in a manner similar to that of the human mind. This aims to resolve the discontinuity between the numerical ranking and textual rationalization present in the binary structure of the current review rating system: {rate: review}. This model can be realized by performing analysis on the abstract menas extracted from each review. The performance of this system was experimentally calculated by performing a 10-fold Cross-Validation test of 1000 reviews obtained from the Naver Movie site. The system achieved an 85% F1 Score when compared to predefined values using a predefined appraisal dictionary.

  • PDF

Emotion Classification of User's Utterance for a Dialogue System (대화 시스템을 위한 사용자 발화 문장의 감정 분류)

  • Kang, Sang-Woo;Park, Hong-Min;Seo, Jung-Yun
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.4
    • /
    • pp.459-480
    • /
    • 2010
  • A dialogue system includes various morphological analyses for recognizing a user's intention from the user's utterances. However, a user can represent various intentions via emotional states in addition to morphological expressions. Thus, a user's emotion recognition can analyze a user's intention in various manners. This paper presents a new method to automatically recognize a user's emotion for a dialogue system. For general emotions, we define nine categories using a psychological approach. For an optimal feature set, we organize a combination of sentential, a priori, and context features. Then, we employ a support vector machine (SVM) that has been widely used in various learning tasks to automatically classify a user's emotions. The experiment results show that our method has a 62.8% F-measure, 15% higher than the reference system.

  • PDF

Valenztheoretische Untersuchung der deutschen Emotionsverben (결합가 이론에 의한 독일어 감정동사 연구)

  • Kim Soo-Nam
    • Koreanishche Zeitschrift fur Deutsche Sprachwissenschaft
    • /
    • v.6
    • /
    • pp.23-55
    • /
    • 2002
  • 이 논문의 목적은 수없이 많은 독일어 동사들 가운데 사람의 심리-감정을 표현하는 동사, 소위 감정동사(Emotionsverben: Verben der Gefuhlsbewegung)를 하나의 어휘-의미장(lexikalisch-semantisches Feld)으로 보고 이들의 통사구조 및 의미구조를 파악하여 결합가 모형화 하는 것이다. 우리는 감정동사의 통사 구조 및 의미구조를 기술하기 위해 동사 중심의 결합가 이론과 격이론을 이론적$\cdot$방법론적 토대로 삼았다. 또한 우리는 감정동사를 보충어의 수와 형태에 따라 크게 세 가지 그룹, 즉 2개의 보충어를 갖는 그룹 I(이 그룹에 속하는 동사들은 무생물(사물)을 주어로 갖는다)과 그룹 II(이 그룹에 속하는 동사들은 유생물(사람)을 주어로 갖는다) 그리고 3개의 보충어를 갖는 그룹 III(사람과 사람간의 관계를 나타낸다)으로 구분하였다. 예증을 위해 개별 동사에 대해 용례를 제시했다. 2개의 보충어를 갖는 그룹 II를 보충어의 수의성 여부에 따라 하위 분류했다. 보충어의 형태는 명사구(Sn, Sd, Sa, Sa)와 전치사구(pS)에 한정했으며 - 지면관계상 개별 동사의 예문으로 제시하진 않았지만 - 문장형태의 보충어, 예를 들어 dass-문장(Nsdass)과 부정사문(Inf)도 고려하여 통사적 문형(syntaktisches Satzmodell)과 의미적문형(semantisches Satzmodell)에서 제시하였다. 결국 이 논문은 독일어를 배우는 이들에게 독일어 동사의 통사구조 및 의미구조를 보다 쉽게 설명할 수 있는 하나의 방법론을 제시함은 물론, 나아가서는 결합가 사전에서 동사 내항 기술을 위한 기본적인 토대를 제공할 것이다

  • PDF