• Title, Summary, Keyword: 계층적 군집화

Search Result 106, Processing Time 0.038 seconds

A Hierarchical Representatives Clustering Technique for Data Mining (데이터 마이닝을 위한 계층적 대표값 군집화 기법)

  • 안병주;김은주;이일병
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.69-71
    • /
    • 2000
  • 군집화는 데이터 집합을 유사한 데이터 개체들의 군집들로 분할하여 데이터 속에 존재하는 의미 있는 정보를 얻는 과정이다. 대부분의 군집화 기법들은 비교적 적은 양의 데이터를 대상으로 한 것이고 다차원 대용량의 데이터 처리에 관한 문제는 다루지 않고 있어서 데이터 마이닝을 위한 군집화 기법으로는 부적절하다. 따라서 본 논문을 통해 대용량의 데이터에 적용할 수 있는 새로운 군집화 알고리즘인 계층적 대표값 군집화(HRC) 기법을 제안한다. HRC는 자기조직화지도와 계층적 군집화 기법을 접목한 하이브리드 방법으로 두 단계에 거쳐 군집화를 수행한다. 첫 번째 단계에서 자기조직화지도를 통해 데이터를 요약하고, 두 번째 단계에서 요약된 대표값 정보만을 가지고 계층적인 군집화를 수행한다. 또한, 두 번째 단계의 계층적 군집화 적용시 양질의 군집을 발견하기 위해 군집간의 유사도를 측정하는 새로운 척도를 고안하였다. 그리고 실험을 통해 HRC와 기존 군집화 알고리즘이 발견한 군집의 질을 비교하여 성능을 평가했다.

  • PDF

Clustering of Gene Expression Data by using SOM and Hierarchical Clustering (자기 조직화 지도와 계층적 군집화를 이용한 유전자 발현 데이터 군집화 기법)

  • 박창범;이동환;이성환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.784-786
    • /
    • 2003
  • 본 논문에서는 유전자 발현 데이터를 분석하는데 있어서 자기 조직화 지도와 계층적 군집화 기법을 상호 보완적으로 사용하여 사용자가 보다 직관적으로 군집화 결과를 해석할 수 있는 방법을 제안한다. 제안된 방법을 사용하면 빠른 처리 속도로 대용량 데이터 처리에 적합한 자기 조직화 지도의 장점을 살릴 수 있으며 계층적 군집화의 장점인 가시화 기능을 이용하여 자기 조직화 지도의 단점인 군집 경계에 대한 불명확성을 해소하여 군집화 결과를 사용자가 쉽게 이해하고 직관적으로 해석할 수 있도록 도와준다. 본 논문에서 제안된 방법의 효용성을 검증하기 위해 세 종류의 데이터를 사용하여 실험을 수행한 결과 제안된 방법이 기존 방법에 비해 더 나은 성능을 보이는 것을 확인할 수 있었다.

  • PDF

News Clustering and Multi-Document Summarization for Real-time Issue Analysis (실시간 이슈 분석을 위한 뉴스 군집화 및 다중 문서 요약)

  • Yu, Hongyeon;Lee, Seungwoo;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.132-137
    • /
    • 2018
  • 뉴스 기반의 실시간 이슈 분석을 위해서는 실시간으로 생성되는 다중 뉴스 기사 집합을 입력으로 받아 점증적으로 군집화 하고, 각 군집별 정보를 자동으로 요약하는 기술이 필요하다. 기존에는 정적인 데이터 기반의 군집화와 요약 각각에 대한 연구는 활발히 진행되고 있지만, 실시간으로 입력되는 대량의 데이터를 위한 점증적인 군집화와 요약에 대한 연구는 매우 부족하다. 따라서 본 논문에서는 실시간으로 입력되는 대량의 뉴스 기사 집합을 분석하기 위한 점증적이고 계층적인 뉴스 군집화 및 다중 문서 요약 방법을 제안한다. 평가를 위해서 2016년 10월, 11월 두 달간의 실제 데이터를 사용 하였으며, 전문 교육을 받은 연구원들이 Precision at k 기반의 정성평가를 진행하였다. 그 결과, 자동으로 생성된 12개의 군집에서 군집 성능은 평균 66% (상위계층 $l_1$: 82%, 하위계층 $l_2$: 43%), 요약 성능은 평균 92%를 얻었다.

  • PDF

Agglomerative Hierarchical Clustering Using Latent Semantic Analysis in Information Retrieval (정보 검색에서의 잠재 의미 분석 방법을 이용한 응집 계층 군집화 기법 연구)

  • Khiati, Abdel-Ilah Zakaria;Kang, Daehyun;Park, Hansaem;Kwon, Kyunglag;Chung, In-Jeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.952-955
    • /
    • 2014
  • 본 논문에서는 정보 검색 분야에서 잘 알려진 잠재 의미 분석 방법과 계층적 군집화 방법의 단점을 상호 보완하여 보다 효율적인 정보 검색을 위한 혼합형 군집화 방법을 제안한다. 먼저, 잠재 의미 분석 방법은 벡터 연산을 통하여 자동적으로 문서 내에 있는 잠재적인 의미를 찾는 정보 검색분야에서 많이 사용되는 고전적인 방법이다. 그러나 이 방법은 언어의 유의성이나 다의성으로 인하여 발생되는 백-오브-워드(bag-of-word) 문제를 가지고 있다. 두 번째 방법인 문서 군집화를 위하여 범용적으로 사용되고 있는 계층적 군집화 방법이다. 이 방법은 이를 통하여 분석된 군집의 질적 측면에서 볼 때, 여전히 단층적 군집들이 많이 형성되어 세부적인 분석을 통한 추가적인 군집화가 필요함을 알 수 있다. 따라서, 본 논문에서는 앞서 언급한 문제점을 해결하기 위하여 혼합적인 방법으로 잠재 의미 분석 방법을 이용한 응집 계층 군집화 방법을 제안한다. 제안한 방법을 이용하여 잘 알려진 두 개의 데이터에 적용하고 기존의 방법과 그 결과를 비교함으로써 군집의 질적 측면에서의 우수함을 보인다.

  • PDF

Exploration of Hierarchical Techniques for Clustering Korean Author Names (한글 저자명 군집화를 위한 계층적 기법 비교)

  • Kang, In-Su
    • Journal of Information Management
    • /
    • v.40 no.2
    • /
    • pp.95-115
    • /
    • 2009
  • Author resolution is to disambiguate same-name author occurrences into real individuals. For this, pair-wise author similarities are computed for author name entities, and then clustering is performed. So far, many studies have employed hierarchical clustering techniques for author disambiguation. However, various hierarchical clustering methods have not been sufficiently investigated. This study covers an empirical evaluation and analysis of hierarchical clustering applied to Korean author resolution, using multiple distance functions such as Dice coefficient, Cosine similarity, Euclidean distance, Jaccard coefficient, Pearson correlation coefficient.

Motif-Based Protein Clustering (Motif 기반의 단백질 군집화)

  • Jin, Hoon;Kim, Hyun-Sik; Kim, In-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • /
    • pp.235-237
    • /
    • 2002
  • motif란 기능적으로 유사한 단백질 군의 아마노산 서열들에 공통적으로 나타나는 일정한 패턴이나 부분서열을 말한다. 본 논문에서는 motif들로 각 단백질의 특성을 표현한 다음, 이것을 기초로 유사성을 비교하여 단백질들을 기능적으로 유사한 여러개의 계층적 군으로 나누는 군집화 방법을 소개하였다. 영역 특성상 확장성과 계층성을 가지는 신경망 GHSOM을 군집화 알고리즘으로 사용하였고, 실제 307 개의 단백질들에 대한 군집화 실험을 통해 그 효과를 확인해보았다.

  • PDF

Hierarchical and Incremental Clustering for Semi Real-time Issue Analysis on News Articles (준 실시간 뉴스 이슈 분석을 위한 계층적·점증적 군집화)

  • Kim, Hoyong;Lee, SeungWoo;Jang, Hong-Jun;Seo, DongMin
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.556-578
    • /
    • 2020
  • There are many different researches about how to analyze issues based on real-time news streams. But, there are few researches which analyze issues hierarchically from news articles and even a previous research of hierarchical issue analysis make clustering speed slower as the increment of news articles. In this paper, we propose a hierarchical and incremental clustering for semi real-time issue analysis on news articles. We trained siamese neural network based weighted cosine similarity model, applied this model to k-means algorithm which is used to make word clusters and converted news articles to document vectors by using these word clusters. Finally, we initialized an issue cluster tree from document vectors, updated this tree whenever news articles happen, and analyzed issues in semi real-time. Through the experiment and evaluation, we showed that up to about 0.26 performance has been improved in terms of NMI. Also, in terms of speed of incremental clustering, we also showed about 10 times faster than before.

Comparison of Document Clustering Performance Using Various Dimension Reduction Methods (다양한 차원 축소 기법을 적용한 문서 군집화 성능 비교)

  • Cho, Heeryon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.437-438
    • /
    • 2018
  • 문서 군집화 성능을 높이기 위한 한 방법으로 차원 축소를 적용한 문서 벡터로 군집화를 실시하는 방법이 있다. 본 발표에서는 특이값 분해(SVD), 커널 주성분 분석(Kernel PCA), Doc2Vec 등의 차원 축소 기법을, K-평균 군집화(K-means clustering), 계층적 병합 군집화(hierarchical agglomerative clustering), 스펙트럼 군집화(spectral clustering)에 적용하고, 그 성능을 비교해 본다.

A Clustering Method using GHSOM for Processing Large Data (GHSOM을 이용한 대용량 데이터 처리의 군집화 방법)

  • Kim, Man-Sun;Lee, Sang-Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • /
    • pp.393-396
    • /
    • 2002
  • 최근 대용량의 데이터베이스로부터 유용한 정보를 발견하고 데이터간에 존재하는 연관성을 탐색하고 분석하는 데이터 마이닝에 관한 많은 연구들이 진행되고 있다. 실제 응용분야에선 수집된 데이터는 시간이 지날수록 데이터의 양이 늘어나게 되고, 중복되는 속성과 잡음을 갖게 되어 마이닝 기법을 이용하는데 많은 시간과 비용이 소요된다. 또한 어느 속성이 중요한지 알 수 없어 중요한 속성이 중요하지 않은 속성에 의해 왜곡되거나 제대로 분석되지 않을 수 있다. 본 연구는 이러한 문제점들을 해결하기 위해 GHSOM을 이용한 계층적 신경망 군집화 방법을 제안한다. 제안하는 방법은 비리 군집의 개수를 정해줄 필요가 없고, 다양한 레벨의 군집들을 얻을 수 있는 계층적 군집화를 이루어낸다는 장점을 갖는다. 본 논문에서는 신경망 GHSOM의 구조와 특성에 대해 간략히 살펴보고 시스템 처리과정에 대해 설명한다.

  • PDF

Outlier Data Clustering using Factor Score (인자 점수를 이용한 이상치 데이터의 군집화)

  • 전성해;임민택;오경환
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • /
    • pp.77-80
    • /
    • 2002
  • 이상치를 포함한 학습 데이터의 군집화 전략은 일반적으로 이상치를 포함하여 학습하거나, 이상치를 제거하는 두 가지 선택이 가능하다. 이상치를 제거하지 않고 학습에 반영시켜야 할 경우 한 개 또는 소수의 이상치가 독자적인 군집을 형성하거나 객관적인 군집화를 방해하는 문제가 발생할 수 있다. 이 때 주어진 학습 데이터의 군집 결과가 이상치의 영향으로부터 벗어나기 위해 원래의 학습 데이터에 대한 변환 작업을 거친 후 군집화를 수행할 수 있다. 이러한 변환 방법으로서 본 논문에서는 차원 축소의 기법으로 알려진 인자 분석의 점수를 사용하였다. 인자 점수로 변환된 학습 데이터에 대해 계층적 군집화, K-means 그리고 자기조직화 지도 등과 같은 군집화 알고리즘을 적용하면 이상치가 자신만의 군집을 별도로 형성하지 않고 다른 학습 데이터의 군집에 소속되면서 이상회의 영향으로부터 벗어남을 실험을 통하여 확인하였다.

  • PDF