• 제목, 요약, 키워드: 깁스 샘플링

검색결과 15건 처리시간 0.054초

소량자료를 위한 베이지안 다중 변환점 모형 (Bayesian Multiple Change-Point for Small Data)

  • 전수영
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.2
    • /
    • pp.237-246
    • /
    • 2012
  • 다중 변환점(multiple change-point) 추론에 있어 소량자료에 관한 연구는 많지 않다. 본 논문에서는 소량 자료의 다중 변환점 추정을 위해 베이지안 비중심(noncentral) t 분포 변환점 모형을 제안하고, 제안된 모형 추론을 위해 메트로폴리스-해스팅스를 포함한 깁스 샘플링(Metropolis-Hastings-Within-Gibbs sampling) 알고리즘을 이용하였다. 모의실험 및 태풍 발생 수의 실증 분석결과는 제안된 모형과 알고리즘의 우수성을 보여 준다.

RAYLEIGH와 ERLANG 추세를 가진 혼합 고장모형에 대한 베이지안 추론에 관한 연구 (Bayesian Inference for Mixture Failure Model of Rayleigh and Erlang Pattern)

  • 김희철;이승주
    • 응용통계연구
    • /
    • v.13 no.2
    • /
    • pp.505-514
    • /
    • 2000
  • 마코브체인 몬테칼로방법중에서 깁스 추출방법을 혼합 고장모형에 이용하였다. 베이자안 추론에서 조건부분포를 가지고 사후 분포를 결정하는데 있어서 계산 문제와 이론적인 정당성을 고려하여 감마족인 Rayleigh와 Erlang추세를 가진 혼합모형에 대하여 깁스샘플링 알고리즘을 이용하여 베이지안 계산과 신뢰도 추이를 알아보고 모의실험자료를 이용하여 수치적인 계산을 시행하고 그 결과를 제시하였다.

  • PDF

Bayesian Inference for Littlewood-Verrall Reliability Model

  • Choi, Ki-Heon;Choi, Hae-Ja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper we discuss Bayesian computation and model selection for Littlewood-Verrall model using Gibbs sampling. A numerical example with a simulated data is given.

  • PDF

MCMC를 이용한 비동질적 포아송과정에서 일반화 순서통계량 모형의 연구

  • 최기헌;김희철
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.3
    • /
    • pp.753-763
    • /
    • 1997
  • 컴퓨터의 발전에 따른 MCMC를 비동질적 포아송 과정에 이용하였다. 베이지안 추론에서 조건부 분포를 가지고 사후분포를 결정하는데 있어서의 계산 문제를 고려하였다. 특히 분포가 이중지수, 곰페르츠, 랄리, 감마, 그리고 검벨인 일반 순서통계량 모형에 대하여 깁스 샘플링과 메트로폴리스 알고리즘을 활용한 베이지안 계산과 모형선택을 제시하였다.

  • PDF

소프트웨어 신뢰모형에 대한 베이지안 접근 (Bayesian Approach for Software Reliability Models)

  • 최기헌
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.1
    • /
    • pp.119-133
    • /
    • 1999
  • 마코브체인 몬테칼로 방법을 소프트웨어 신뢰모형에 이용하였다. 베이지안 추론에서 조건부 분포를 가지고 사후분포를 결정하는데 있어서의 계산 문제를 고찰하였다. 특히 레코드값을 통계량을 갖고서 혼합과정과 중첩과정에 대하여 깁스샘플링 알고리즘과 메트로폴리스 알고리즘을 활용하여 베이지안 계산과 모형 선택을 제시하고 모의실험자료를 이용하여 수치적 인 계산을 시행하고 그 결과를 비교하였다.

  • PDF

깁스 샘플링을 이용한 변형된 Jelinski-Moranda 모형에 대한 베이지안 추론 (Bayesian Inference for Modified Jelinski-Moranda Model by using Gibbs Sampling)

  • 최기헌;주정애
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • v.1 no.2
    • /
    • pp.183-192
    • /
    • 2001
  • Jelinski-Moranda model and modified Jelinski-Moranda model in software reliability are studied and we consider maximum likelihood estimator and Bayes estimates of the number of faults and the fault-detection rate per fault. A gibbs sampling approach is employed to compute the Bayes estimates, future survival function is examined. Model selection based on prequential likelihood of the conditional predictive ordinates. A numerical example with simulated data set is given.

  • PDF

웨이브렛 변환을 응용한 합성자료 및 기조력 자료의 잡음 제거 (Denoise of Synthetic and Earth Tidal Effect using Wavelet Transform)

  • 임형래;진홍성;권병두
    • 지구물리
    • /
    • v.2 no.2
    • /
    • pp.143-152
    • /
    • 1999
  • 지구 물리 자료의 질을 높이기 위한 전처리 과정에서 웨이브렛 변환을 도입하여 잡음을 제거하는 기법에 관한 연구를 수행하였다. 이 기법의 효율성을 평가하기 위하여 합성자료를 이용하여 저역통과 필터링과 웨이브렛 변환을 통한 잡음 제거 결과를 비교하였다. 저역통과 필터링한 삼각함수 신호는 샘플링 구간에서 신호 양단의 차이에 기인하는 깁스 현상에 의해 오차가 나타났고, 범프 신호는 고주파 성분이 소멸되어 피크가 나타나는 부근에서 큰 오차가 발생하였다. 웨이브렛 변환을 이용한 잡음 제거에서는 시간 영역에서의 국부성과 웨이브렛 변환 영역에서의 신호와 무작위 잡음이 구분 가능하다는 특성을 이용함으로써 잡음을 효과적으로 제거할 수 있었다. 실측된 기조력 자료는 계기 보정 후 Soft threshold를 통해 잡음이 효과적으로 제거됨을 보였고, 이를 이론 기조력 값과 비교하여 G-인자를 계산하였다.

  • PDF

계층적 베이지안 혼합 효과 모델을 사용한 비동차 마코프 체인의 분석 (Bayesian Hierarchical Mixed Effects Analysis of Time Non-Homogeneous Markov Chains)

  • 성민제
    • 응용통계연구
    • /
    • v.27 no.2
    • /
    • pp.263-275
    • /
    • 2014
  • 본 연구에서는 비동차 마코프 체인에서 개체들의 전이 행태를 분석하기 위한 계층적 베이지안 방법론을 사용하여 혼합 효과 모델을 소개 하였다. 모델의 모수들에 대한 사후분포가 분석적으로 구해질 수 없는 형태를 가지기 때문에 깁스(Gibbs) 샘플링 시뮬레이션 방법을 사용하여 조건부 사후확률로부터 샘플이 추출되었고, 실제 자료분석을 예를 사용하였다.

비동질적 포아송과정을 사용한 소프트웨어 신뢰 성장모형에 대한 베이지안 신뢰성 분석에 관한 연구 (The Bayesian Analysis for Software Reliability Models Based on NHPP)

  • 이상식;김희철;송영재
    • 정보처리학회논문지D
    • /
    • v.10D no.5
    • /
    • pp.805-812
    • /
    • 2003
  • 본 논문에서는 비동질 포아송 과정(NHPP)에 기초한 소프트웨어 에러 현상에 대한 신뢰도 모형을 고려하고 사전정보(Prior information)를 이용한 베이지안 추론을 시행하였다. 고장 패턴은 NHPP에 대한 강도함수와 평균값 함수로서 나타낼 수 있다. 따라서 본 논문에서는 대수형 포아송 실행시간 모형(Logarithmic Poisson model), Crow 모형 그리고 Rayleigh 모형에 대하여 베이지안 모수 추정방법을 적용하였다. 효율적 모형을 위하여 이들 모형에 관한 모형선택을 편차자승합(SSE)의 합을 이용하여 시행하였고 모수의 추정을 위해서 마코브체인 몬테카를로(MCMC) 기법중에 하나인 깁스샘플링(Gibbs sampling)과 메트로폴리스 알고리즘을 이용한 근사추정 기법이 사용되었다. 수치적인 예에서는 Musa의 T1 자료를 이용하여 모수 및 신뢰도를 추정한 수치 결과론 나열하였다.

정규확률변수 관측치열에 대한 베이지안 변화점 분석 : 서울지역 겨울철 평균기온 자료에의 적용 (Bayesian Change Point Analysis for a Sequence of Normal Observations: Application to the Winter Average Temperature in Seoul)

  • 김경숙;손영숙
    • 응용통계연구
    • /
    • v.17 no.2
    • /
    • pp.281-301
    • /
    • 2004
  • 본 논문에서는 일변량 정규분포를 따르는 확률변수의 관측치열에 대한 변화점 문제(change point problem)를 고찰한다. 변화점의 존재유무, 그리고 만일 변화점이 존재한다면 어떠한 유형으로 발생했는지 즉, 변화점 발생 이후로 평균만 변화, 분산만 변화, 또는 평균과 분산 모두가 변화했는지를 밝힌다. 가능한 여러 유형의 변화모형들 가운데 최적의 모형을 선택하기 위해 베이지안 모형선택 기법을 이용하고, 선택된 모형에 내재된 모수를 추정 하기 위해 메트로폴리스-혜스팅스 알고리 즘을 포함한 깁스샘플링 을 이용한다. 이러한 방법론은 모의실험을 통해 검토되고, 또한 서울지역의 겨울철 평균기온 자료에 적용된다.