We have studied a denoising technique involving wavelet transform for improving the quality of geophysical data during the preprocessing stage. To assess the effectiveness of this technique, we have made synthetic data contaminated by random noises and compared the results of denoising with those obtained by conventional low-pass filtering. The low-pass filtering of the sinusoidal signal having a sharp discontinuity between the first and last sample values shows apparent errors related to Gibbs' phenomena. For the case of bump signal, the low-pass filtering induces maximum errors on peak values by removing some high-frequency components of signal itself. The wavelet transform technique, however, denoises these signals with much less adverse effects owing to its pertinent properties on locality of wavelet and easy discrimination of noise and signal in the wavelet domain. The field data of gravity tide are denoised by using soft threshold, which shrinked all the wavelet coefficients toward the origin, and the G-factor is determined by comparing the denoised data and theoretical data.